IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics0378437119314451.html
   My bibliography  Save this article

A new fractional modelling and control strategy for the outbreak of dengue fever

Author

Listed:
  • Jajarmi, Amin
  • Arshad, Sadia
  • Baleanu, Dumitru

Abstract

This paper deals with a new mathematical model for a dengue fever outbreak based on a system of fractional differential equations. The equilibrium points and stability of the new system are studied. To simulate this model, a new and efficient numerical method is provided and its stability and convergence are proved. According to a real outbreak on the Cape Verde Islands occurred in year 2009, the new model is examined for a period of three months by using singular or nonsingular kernels in the definition of derivative operator. Simulation results show that the proposed formalism with exponential kernel agrees well with the real data in the early stage of the epidemic while the Mittag-Leffler kernel fits the reality for the later part of the time interval. Hence, the new framework in a hybrid manner can properly simulate the dynamics of the disease in the whole of the time interval. In order to stabilize the disease-free equilibrium point of the system under investigation, two control strategies are suggested. Numerical simulations verify that the proposed stabilizing controllers are efficient and provide significantly remarkable results.

Suggested Citation

  • Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119314451
    DOI: 10.1016/j.physa.2019.122524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314451
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdulhameed, M. & Muhammad, M.M. & Gital, A.Y. & Yakubu, D.G. & Khan, I., 2019. "Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 42-71.
    2. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2019. "Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 762-772.
    3. Chang, Ailian & Sun, HongGuang & Zhang, Yong & Zheng, Chunmiao & Min, Fanlu, 2019. "Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 119-126.
    4. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    6. Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2019. "A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the Planetary Boundary Layer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 38-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    3. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Oxygen-plankton model under the effect of global warming with nonsingular fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Yusuf, Abdullahi & Tasiu Mustapha, Umar & Abdulkadir Sulaiman, Tukur & Hincal, Evren & Bayram, Mustafa, 2021. "Modeling the effect of horizontal and vertical transmissions of HIV infection with Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Akgül, Ali & Partohaghighi, Mohammad, 2022. "New fractional modelling and control analysis of the circumscribed self-excited spherical strange attractor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    8. Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
    9. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    12. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    14. Gómez-Aguilar, J.F., 2020. "Chaos and multiple attractors in a fractal–fractional Shinriki’s oscillator model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    15. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    16. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. Kumar, Pushpendra & Govindaraj, V. & Erturk, Vedat Suat, 2022. "A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    20. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119314451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.