A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the Planetary Boundary Layer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.11.064
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Goulart, A.G.O. & Lazo, M.J. & Suarez, J.M.S. & Moreira, D.M., 2017. "Fractional derivative models for atmospheric dispersion of pollutants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 9-19.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Miglena N. Koleva & Lubin G. Vulkov, 2023. "Numerical Solution of Fractional Models of Dispersion Contaminants in the Planetary Boundary Layer," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
- Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miglena N. Koleva & Lubin G. Vulkov, 2023. "Numerical Solution of Fractional Models of Dispersion Contaminants in the Planetary Boundary Layer," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
- Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Troparevsky, M.I. & Muszkats, J.P. & Seminara, S.A. & Zitto, M.E. & Piotrkowski, R., 2022. "Modeling particulate pollutants dispersed in the atmosphere using fractional turbulent diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
More about this item
Keywords
Dispersion of contaminants; Fractional calculus; Concentration flux;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:518:y:2019:i:c:p:38-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.