IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4837-d853801.html
   My bibliography  Save this article

Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs

Author

Listed:
  • Fernando Alcántara-López

    (Department of Mathematics, Faculty of Science, National Autonomous University of Mexico, Circuito Exterior S/N, Mexico City 04510, Mexico)

  • Carlos Fuentes

    (Mexican Institute of Water Technology, Paseo Cuauhnáhuac Num. 8532, Jiutepec 62550, Mexico)

  • Rodolfo G. Camacho-Velázquez

    (Engineering Faculty, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico)

  • Fernando Brambila-Paz

    (Department of Mathematics, Faculty of Science, National Autonomous University of Mexico, Circuito Exterior S/N, Mexico City 04510, Mexico)

  • Carlos Chávez

    (Water Research Center, Department of Irrigation and Drainage Engineering, Autonomous University of Querétaro, Cerro de las Campanas S/N, Col. Las Campanas, Querétaro 76010, Mexico)

Abstract

Due to the complexity imposed by all the attributes of the fracture network of many naturally fractured reservoirs, it has been observed that fluid flow does not necessarily represent a normal diffusion, i.e., Darcy’s law. Thus, to capture the sub-diffusion process, various tools have been implemented, from fractal geometry to characterize the structure of the porous medium to fractional calculus to include the memory effect in the fluid flow. Considering infinite naturally fractured reservoirs (Type I system of Nelson), a spatial fractional Darcy’s law is proposed, where the spatial derivative is replaced by the Weyl fractional derivative, and the resulting flow model also considers Caputo’s fractional derivative in time. The proposed model maintains its dimensional balance and is solved numerically. The results of analyzing the effect of the spatial fractional Darcy’s law on the pressure drop and its Bourdet derivative are shown, proving that two definitions of fractional derivatives are compatible. Finally, the results of the proposed model are compared with models that consider fractal geometry showing a good agreement. It is shown that modified Darcy’s law, which considers the dependency of the fluid flow path, includes the intrinsic geometry of the porous medium, thus recovering the heterogeneity at the phenomenological level.

Suggested Citation

  • Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4837-:d:853801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Metzler, Ralf & Glöckle, Walter G. & Nonnenmacher, Theo F., 1994. "Fractional model equation for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 13-24.
    2. Chang, Ailian & Sun, HongGuang & Zhang, Yong & Zheng, Chunmiao & Min, Fanlu, 2019. "Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 119-126.
    3. Razminia, Kambiz & Razminia, Abolhassan & Torres, Delfim F.M., 2015. "Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 374-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    2. Zhou, Ziyi & Zhang, Haixiang & Yang, Xuehua, 2024. "CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    3. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    4. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    5. Hanif, Hanifa, 2022. "A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 1-13.
    6. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    7. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    8. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    9. Claudia A. Pérez-Pinacho & Cristina Verde, 2022. "A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model," Mathematics, MDPI, vol. 10(5), pages 1-13, February.
    10. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    11. Dmitry Zhukov & Konstantin Otradnov & Vladimir Kalinin, 2024. "Fractional-Differential Models of the Time Series Evolution of Socio-Dynamic Processes with Possible Self-Organization and Memory," Mathematics, MDPI, vol. 12(3), pages 1-19, February.
    12. Essex, Christopher & Schulzky, Christian & Franz, Astrid & Hoffmann, Karl Heinz, 2000. "Tsallis and Rényi entropies in fractional diffusion and entropy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 299-308.
    13. Afzaal Mubashir Hayat & Muhammad Bilal Riaz & Muhammad Abbas & Moataz Alosaimi & Adil Jhangeer & Tahir Nazir, 2024. "Numerical Solution to the Time-Fractional Burgers–Huxley Equation Involving the Mittag-Leffler Function," Mathematics, MDPI, vol. 12(13), pages 1-22, July.
    14. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    15. Jajarmi, Amin & Yusuf, Abdullahi & Baleanu, Dumitru & Inc, Mustafa, 2020. "A new fractional HRSV model and its optimal control: A non-singular operator approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    16. Lenzi, M.K. & Lenzi, E.K. & Guilherme, L.M.S. & Evangelista, L.R. & Ribeiro, H.V., 2022. "Transient anomalous diffusion in heterogeneous media with stochastic resetting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    17. Satin, Seema E. & Parvate, Abhay & Gangal, A.D., 2013. "Fokker–Planck equation on fractal curves," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 30-35.
    18. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Paradisi, Paolo & Cesari, Rita & Mainardi, Francesco & Tampieri, Francesco, 2001. "The fractional Fick's law for non-local transport processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 130-142.
    20. Lenzi, E.K. & Mendes, R.S. & Gonçalves, G. & Lenzi, M.K. & da Silva, L.R., 2006. "Fractional diffusion equation and Green function approach: Exact solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 215-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4837-:d:853801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.