IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp390-401.html
   My bibliography  Save this article

Development of the mitigation strategy against the schedule risks of the R&D project through controlling the cascading failure of the R&D network

Author

Listed:
  • Wang, Jingbei
  • Yang, Naiding
  • Zhang, Yanlu
  • Song, Yue

Abstract

For R&D projects, the cascading failure among R&D firms will lead to the schedule risks of the R&D tasks, which may lead to potential severe consequences. It is necessary to develop mitigation strategies against cascading failures, so as to reduce schedule risks of R&D projects. Firstly, we propose the BBV algorithm to build the R&D network. Secondly, we build the model of the cascading failures of the R&D network based on the CA model. Thirdly, we develop the mitigation strategies against the schedule risks of the R&D project through controlling the cascading failure. Finally, we analyze different effectiveness of these mitigation strategies against the cascading failures of the R&D network under different values of some critical parameters and different attack strategies. The simulation results show that with the increase of μ and β, the schedule risk of the task network gradually decreases. With the increase of the control parameters ζ, the schedule risk of the task network gradually increases. In any case, the effectiveness of global immunization is better than local immunization, when we know the global information, HI is better than KI, and when we only know the local information, IAI is better than AI. The effectiveness of mitigation strategy under random attack strategy is the best, followed by high-degree attack strategy and high-centrality attack strategy. This provides a new useful theoretical basis on how to keep the safety of the schedule of the R&D project proactively against the cascading failure of the R&D firms in the real world.

Suggested Citation

  • Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2018. "Development of the mitigation strategy against the schedule risks of the R&D project through controlling the cascading failure of the R&D network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 390-401.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:390-401
    DOI: 10.1016/j.physa.2018.05.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118306423
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roediger-Schluga, Thomas & Barber, Michael J., 2007. "R&D collaboration networks in the European FrameworkProgrammes: Data processing, network construction and selected results," MERIT Working Papers 2007-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    2. Hanaki, Nobuyuki & Nakajima, Ryo & Ogura, Yoshiaki, 2010. "The dynamics of R&D network in the IT industry," Research Policy, Elsevier, vol. 39(3), pages 386-399, April.
    3. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    4. Rocco S, Claudio M. & Ramirez-Marquez, José Emmanuel, 2009. "Deterministic network interdiction optimization via an evolutionary approach," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 568-576.
    5. von Zedtwitz, Maximilian & Gassmann, Oliver, 2002. "Market versus technology drive in R&D internationalization: four different patterns of managing research and development," Research Policy, Elsevier, vol. 31(4), pages 569-588, May.
    6. Myriam Cloodt & John Hagedoorn & Nadine Roijakkers, 2010. "Inter-firm R&D networks in the global software industry: An overview of major trends and patterns," Business History, Taylor & Francis Journals, vol. 52(1), pages 120-149.
    7. Wang, Jianwei, 2013. "Mitigation strategies on scale-free networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2257-2264.
    8. Bier, Vicki M. & Gratz, Eli R. & Haphuriwat, Naraphorn J. & Magua, Wairimu & Wierzbicki, Kevin R., 2007. "Methodology for identifying near-optimal interdiction strategies for a power transmission system," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1155-1161.
    9. Gong, Yong-Wang & Song, Yu-Rong & Jiang, Guo-Ping, 2014. "Epidemic spreading in metapopulation networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 208-218.
    10. Eusgeld, Irene & Kröger, Wolfgang & Sansavini, Giovanni & Schläpfer, Markus & Zio, Enrico, 2009. "The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 954-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yao & Zuo, Fei & Guan, Xin, 2020. "Integrating case-based analysis and fuzzy optimization for selecting project risk response actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2019. "Modeling and simulation of the cascading failure of R&D network considering the community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 43-53.
    3. Yang, Qing & Zou, Xingqi & Ye, Yunting & Yao, Tao, 2022. "Evaluating the criticality of the product development project portfolio network from the perspective of risk propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    4. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Liu, Hui & Yang, Naiding & Yang, Zhao & Lin, Jianhong & Zhang, Yanlu, 2020. "The impact of firm heterogeneity and awareness in modeling risk propagation on multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    6. Li, Ruimeng & Yang, Naiding & Yi, Hao & Jin, Na, 2023. "The robustness of complex product development projects under design change risk propagation with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    2. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José, 2013. "Identification of top contributors to system vulnerability via an ordinal optimization based method," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 92-98.
    5. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.
    6. Zhang, Yanlu & Yang, Naiding, 2013. "Research on robustness of R&D network under cascading propagation of risk with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 1-8.
    7. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    8. Zio, E. & Golea, L.R. & Rocco S., C.M., 2012. "Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 172-177.
    9. Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2019. "Modeling and simulation of the cascading failure of R&D network considering the community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 43-53.
    10. Bruneel, Johan & Clarysse, Bart & Bobelyn, Annelies & Wright, Mike, 2020. "Liquidity events and VC-backed academic spin-offs: The role of search alliances," Research Policy, Elsevier, vol. 49(10).
    11. Barge-Gil, Andrés & López, Alberto, 2014. "R&D determinants: Accounting for the differences between research and development," Research Policy, Elsevier, vol. 43(9), pages 1634-1648.
    12. Zifeng Chen & Jiancheng Guan, 2011. "Mapping of biotechnology patents of China from 1995–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 73-89, July.
    13. Krammer, Sorin M.S., 2022. "Human resource policies and firm innovation: The moderating effects of economic and institutional context," Technovation, Elsevier, vol. 110(C).
    14. Patricia Laurens & Christian Le Bas & Antoine Schoen, 2019. "Worldwide IP coverage of patented inventions in large pharma firms: to what extent do the internationalisation of R&D and firm strategy matter?," Post-Print hal-01725229, HAL.
    15. Simen G. Enger & Fulvio Castellacci, 2016. "Who gets Horizon 2020 research grants? Propensity to apply and probability to succeed in a two-step analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1611-1638, December.
    16. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    17. John Van Reenen & Rupert Harrison & Rachel Griffith, 2006. "How Special Is the Special Relationship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test of Technology Sourcing," American Economic Review, American Economic Association, vol. 96(5), pages 1859-1875, December.
    18. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    19. He, Yuanqiong & Keung Lai, Kin & Sun, Hongyi & Chen, Yun, 2014. "The impact of supplier integration on customer integration and new product performance: The mediating role of manufacturing flexibility under trust theory," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 260-270.
    20. Cozza, Claudio & Franco, Chiara & Perani, Giulio, 2018. "R&D endowments at home driving R&D internationalisation: Evidence from the Italian business R&D survey," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 277-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:390-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.