IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6609-d1239464.html
   My bibliography  Save this article

Analysis of Dynamic Characteristics of Tristable Exponential Section of Piezoelectric Energy Harvester

Author

Listed:
  • Zhaoxin Cai

    (School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China)

  • Kuntao Zhou

    (Engineering Training Centers, Tianjin University of Technology, Tianjin 300384, China
    School of Mechanical Engineering, Tiangong University, Tianjin 300384, China)

  • Tao Yang

    (School of Mechanical Engineering, Tiangong University, Tianjin 300384, China)

  • Shuying Hao

    (Tianjin Key Laboratory of Advanced Electromechanical System Design and Control, Tianjin University of Technology, Tianjin 300384, China)

Abstract

Variable-cross-section beams have better mass and strength distribution compared with constant cross-section beams, which can optimize the harvesting power of piezoelectric vibration energy harvesters, which are widely used in self-supplied and low-power electronic devices, providing more convenience and innovation for the development of micromechanical intelligence and portable mobile devices. This paper proposes a piezoelectric energy harvester with a tristable-exponential-decay cross section, which optimizes the strain distribution of the cantilever beam through exponential decay changes to improve the harvesting efficiency of the harvester in low-frequency environments. First, the nonlinear magnetic force is obtained based on the magnetic dipole, and the dynamic model is established by using the Euler–Bernoulli beam theory and Lagrangian equation. The influence of the structural parameters of the harvester on the system dynamics and output characteristics is analyzed in the two dimensions of time and frequency, and the influence of the exponential decay coefficient on the system dynamic response and output power is deeply studied. The research shows that the exponential decay section can reduce the first natural frequency of the cantilever beam; by changing the amplitude, frequency, d and d g of the excitation acceleration, the switching of the monostable, tristable and bistable states of the system can be realized. With a decrease in the exponential decay coefficient, under a low-frequency excitation of 0–7 Hz, the output power of the cantilever beam per unit volume is significantly improved, and under a 4 Hz low-frequency excitation, the acquisition output power per unit volume of the cantilever beam is increased by 7 times, thus realizing low-frequency, high-efficiency energy harvesting.

Suggested Citation

  • Zhaoxin Cai & Kuntao Zhou & Tao Yang & Shuying Hao, 2023. "Analysis of Dynamic Characteristics of Tristable Exponential Section of Piezoelectric Energy Harvester," Energies, MDPI, vol. 16(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6609-:d:1239464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    2. Mojtaba Ghodsi & Morteza Mohammadzaheri & Payam Soltani, 2023. "Analysis of Cantilever Triple-Layer Piezoelectric Harvester (CTLPH): Non-Resonance Applications," Energies, MDPI, vol. 16(7), pages 1-17, March.
    3. Wu, Yipeng & Qiu, Jinhao & Zhou, Shengpeng & Ji, Hongli & Chen, Yang & Li, Sen, 2018. "A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 231(C), pages 600-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    2. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    3. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    4. Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
    5. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    7. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    8. Zhang, Lu & Zheng, Haoyuan & Liu, Biao & Liang, Qiwei & Li, Kai & Liu, Junkao & Chen, Weishan, 2024. "A piezoelectric energy harvester for multi-type environments," Energy, Elsevier, vol. 305(C).
    9. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    10. Zhang, Zutao & Zhang, Xingtian & Rasim, Yagubov & Wang, Chunbai & Du, Bing & Yuan, Yanping, 2016. "Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators," Applied Energy, Elsevier, vol. 164(C), pages 152-161.
    11. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    12. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    13. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    14. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    15. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    16. Wuwei Feng & Hongya Chen & Qingping Zou & Di Wang & Xiang Luo & Cathal Cummins & Chuanqiang Zhang & Shujie Yang & Yuxiang Su, 2024. "A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment," Energies, MDPI, vol. 17(4), pages 1-20, February.
    17. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    18. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    19. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    20. Li, Yi & Zhou, Shengxi & Yang, Zhichun & Guo, Tong & Mei, Xutao, 2019. "High-performance low-frequency bistable vibration energy harvesting plate with tip mass blocks," Energy, Elsevier, vol. 180(C), pages 737-750.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6609-:d:1239464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.