IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10440.html
   My bibliography  Save this article

Experimental control of transport resonances in a coherent quantum rocking ratchet

Author

Listed:
  • Christopher Grossert

    (Institut für Angewandte Physik der Universität Bonn)

  • Martin Leder

    (Institut für Angewandte Physik der Universität Bonn)

  • Sergey Denisov

    (Lobachevsky State University of Nizhny Novgorod
    Institut für Physik, Universität Augsburg
    Sumy State University)

  • Peter Hänggi

    (Lobachevsky State University of Nizhny Novgorod
    Institut für Physik, Universität Augsburg
    Nanosystems Initiative Munich)

  • Martin Weitz

    (Institut für Angewandte Physik der Universität Bonn)

Abstract

The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose–Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport.

Suggested Citation

  • Christopher Grossert & Martin Leder & Sergey Denisov & Peter Hänggi & Martin Weitz, 2016. "Experimental control of transport resonances in a coherent quantum rocking ratchet," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10440
    DOI: 10.1038/ncomms10440
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10440
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Peng-Juan & Zhang, Ji-Qiang & Wang, Peng & Huo, Jie & Wang, Xu-Ming, 2024. "Directed transport of two-coupled particles under the coordination of the coupling and an asymmetric potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Bi, Haohao & Lei, Youming & Han, Yanyan, 2019. "Stochastic resonance across bifurcations in an asymmetric system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1296-1312.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.