IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp1085-1103.html
   My bibliography  Save this article

IMPC: Influence maximization based on multi-neighbor potential in community networks

Author

Listed:
  • Shang, Jiaxing
  • Wu, Hongchun
  • Zhou, Shangbo
  • Zhong, Jiang
  • Feng, Yong
  • Qiang, Baohua

Abstract

The study of influence maximization (IM) has attracted many scholars in recent years due to its import practical values. Given a social network, it aims at finding a subset of k individuals as seed nodes which can trigger the maximum influence cascade through the network under a predefined diffusion model. Kempe et al. first formulated influence maximization as a discrete optimization problem and proved its NP-hardness and submodularity, based on which they further proposed a greedy approach with guaranteed solution accuracy. Unfortunately, the greedy algorithm was also known for its extremely low time efficiency. To solve this problem more efficiently, many research works were proposed in recent years. However, these studies either make sacrifices in solution accuracy or require huge memory consumption. Besides, only a handful of research works can handle mega-scale networks with millions of nodes and edges. To solve this problem both efficiently and effectively, in this paper we propose IMPC: an influence maximization framework based on multi-neighbor potential in community networks. In our approach the influence diffusion process is divided into two phases: (i) multi-neighbor potential based seeds expansion; and (ii) intra-community influence propagation. Based on this framework we derive an objective function to evaluate the overall influence as a combination of the influence during the two phases. We theoretically prove that the objective function is submodular and design an efficient greedy algorithm to find the seed nodes.

Suggested Citation

  • Shang, Jiaxing & Wu, Hongchun & Zhou, Shangbo & Zhong, Jiang & Feng, Yong & Qiang, Baohua, 2018. "IMPC: Influence maximization based on multi-neighbor potential in community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1085-1103.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1085-1103
    DOI: 10.1016/j.physa.2018.08.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309786
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    2. Wang, Wei & Chen, Xiao-Long & Zhong, Lin-Feng, 2018. "Social contagions with heterogeneous credibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 604-610.
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Zhang, Kaiqi & Du, Haifeng & Feldman, Marcus W., 2017. "Maximizing influence in a social network: Improved results using a genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 20-30.
    5. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Chen, Yi & Wang, Xiaolong & Xiang, Xin & Tang, Buzhou & Chen, Qingcai & Fan, Shixi & Bu, Junzhao, 2017. "Overlapping community detection in weighted networks via a Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 790-801.
    7. Liu, Huan-Li & Ma, Chuang & Xiang, Bing-Bing & Tang, Ming & Zhang, Hai-Feng, 2018. "Identifying multiple influential spreaders based on generalized closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2237-2248.
    8. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    9. Ma, Qian & Ma, Jun, 2017. "Identifying and ranking influential spreaders in complex networks with consideration of spreading probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 312-330.
    10. Xiaochun Cao & Xiao Wang & Di Jin & Xiaojie Guo & Xianchao Tang, 2015. "A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    11. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaohong & Li, Zhiying & Qian, Kai & Ren, Jianji & Luo, Junwei, 2020. "Influential node identification in a constrained greedy way," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Zhang, Xian-Jie & Wang, Jing & Ma, Xiao-Jing & Ma, Chuang & Kan, Jia-Qian & Zhang, Hai-Feng, 2022. "Influence maximization in social networks with privacy protection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Gong, Yudong & Liu, Sanyang & Bai, Yiguang, 2021. "A probability-driven structure-aware algorithm for influence maximization under independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Abbas Salehi & Behrooz Masoumi, 2020. "KATZ centrality with biogeography-based optimization for influence maximization problem," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 205-226, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemant Gehlot & Shreyas Sundaram & Satish V. Ukkusuri, 2023. "Algorithms for influence maximization in socio-physical networks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-28, January.
    2. Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
    3. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    4. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    5. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    6. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    7. Majun Shi & Zishen Yang & Wei Wang, 2023. "Greedy Guarantees for Non-submodular Function Maximization Under Independent System Constraint with Applications," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 516-543, February.
    8. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    9. Mohammad Abouei Mehrizi & Federico Corò & Emilio Cruciani & Gianlorenzo D’Angelo, 2022. "Election control through social influence with voters’ uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 635-669, August.
    10. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    11. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    12. Emily M. Craparo & Mumtaz Karatas & Tobias U. Kuhn, 2017. "Sensor placement in active multistatic sonar networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 287-304, June.
    13. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    14. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    15. Hongjie Guo & Jianzhong Li & Hong Gao, 2022. "Data source selection for approximate query," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2443-2459, November.
    16. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    17. repec:dgr:rugsom:99a17 is not listed on IDEAS
    18. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    19. Xin Chen & Qingqin Nong & Yan Feng & Yongchang Cao & Suning Gong & Qizhi Fang & Ker-I Ko, 2017. "Centralized and decentralized rumor blocking problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 314-329, July.
    20. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    21. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1085-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.