IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp824-839.html
   My bibliography  Save this article

Testing for the source of multifractality in water level records

Author

Listed:
  • Wu, Liang
  • Chen, Lei
  • Ding, Yiming
  • Zhao, Tongzhou

Abstract

The multifractality in hydrologic data has been studied in many literatures, but few literatures focus on its source which is helpful for understanding the underlying mechanisms that generate hydrologic data. We propose a hypothesis testing procedure for the source of multifractality in water level records based on the empirical distributions of generalized Hurst exponent estimated from a set of shuffled or surrogate series. The proposed hypothesis testing procedure can show more details about the source of multifractality than previous methods with some statistics, especially about the effects of large and small fluctuations on multifractality. The generalized Hurst exponents are estimated via multifractal detrended fluctuation analysis. The data set contains about two million high-frequency water level records of a northern China river at its 10 observation stations. The testing results show that the multifractality in water levels is mainly caused by nonlinear correlations in small fluctuations and linear correlations in small and large fluctuations, and is also related to the probability distribution of small fluctuations. This conclusion is validated via some constructed semi-surrogate series and values of statistics for source testing.

Suggested Citation

  • Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:824-839
    DOI: 10.1016/j.physa.2018.05.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307003
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    2. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    3. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    4. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    5. Kantelhardt, Jan W. & Rybski, Diego & Zschiegner, Stephan A. & Braun, Peter & Koscielny-Bunde, Eva & Livina, Valerie & Havlin, Shlomo & Bunde, Armin, 2003. "Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 240-245.
    6. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    7. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    8. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    9. Lim, Gyuchang & Kim, SooYong & Lee, Hyoung & Kim, Kyungsik & Lee, Dong-In, 2007. "Multifractal detrended fluctuation analysis of derivative and spot markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 259-266.
    10. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    11. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    12. Tongzhou Zhao & Liang Wu & Dehua Li & Yiming Ding, 2017. "Multifractal Analysis of Hydrologic Data Using Wavelet Methods and Fluctuation Analysis," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-18, October.
    13. Dariusz Grech & Grzegorz Pamu{l}a, 2013. "On the multifractal effects generated by monofractal signals," Papers 1307.2014, arXiv.org, revised Aug 2013.
    14. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    15. Jun Taek Lee & Damian G. Kelty-Stephen, 2017. "Cascade-Driven Series with Narrower Multifractal Spectra Than Their Surrogates: Standard Deviation of Multipliers Changes Interactions across Scales," Complexity, Hindawi, vol. 2017, pages 1-8, January.
    16. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    17. Grech, Dariusz & Pamuła, Grzegorz, 2013. "On the multifractal effects generated by monofractal signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5845-5864.
    18. Moyano, L.G. & de Souza, J. & Duarte Queirós, S.M., 2006. "Multi-fractal structure of traded volume in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(1), pages 118-121.
    19. B. Podobnik & D. F. Fu & H. E. Stanley & P. Ch. Ivanov, 2007. "Power-law autocorrelated stochastic processes with long-range cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 47-52, March.
    20. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    21. A. Arnéodo & N. Decoster & S.G. Roux, 2000. "A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 15(3), pages 567-600, June.
    22. P. Norouzzadeh & B. Rahmani & M. S. Norouzzadeh, 2007. "Forecasting Smoothed Non-Stationary Time Series Using Genetic Algorithms," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1071-1086.
    23. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    24. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    25. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    26. Hajian, S. & Movahed, M. Sadegh, 2010. "Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4942-4957.
    27. Sadegh Movahed, M. & Hermanis, Evalds, 2008. "Fractal analysis of river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 915-932.
    28. Chianca, C.V. & Ticona, A. & Penna, T.J.P., 2005. "Fourier-detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(3), pages 447-454.
    29. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel T. Ogunjo, 2023. "The impact of the 2007–2008 global financial crisis on the multifractality of the Nigerian Stock Exchange," SN Business & Economics, Springer, vol. 3(1), pages 1-17, January.
    2. Foued Sa^adaoui, 2023. "Structured Multifractal Scaling of the Principal Cryptocurrencies: Examination using a Self-Explainable Machine Learning," Papers 2304.08440, arXiv.org.
    3. Stan, Cristina & Marmureanu, Luminita & Marin, Cristina & Cristescu, Constantin P., 2020. "Investigation of multifractal cross-correlation surfaces of Hurst exponents for some atmospheric pollutants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    3. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    4. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    5. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    6. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    7. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    8. Li, Tingyi & Xue, Leyang & Chen, Yu & Chen, Feier & Miao, Yuqi & Shao, Xinzeng & Zhang, Chenyi, 2018. "Insights from multifractality analysis of tanker freight market volatility with common external factor of crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 374-384.
    9. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    10. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    11. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    12. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    13. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    15. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    16. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    17. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    18. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    19. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    20. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:824-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.