IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i14p2793-2805.html
   My bibliography  Save this article

Wavelet Leaders: A new method to estimate the multifractal singularity spectra

Author

Listed:
  • Serrano, E.
  • Figliola, A.

Abstract

Wavelet Leaders is a novel alternative based on wavelet analysis for estimating the Multifractal Spectrum. It was proposed by Jaffard and co-workers improving the usual wavelet methods. In this work, we analyze and compare it with the well known Multifractal Detrended Fluctuation Analysis. The latter is a comprehensible and well adapted method for natural and weakly stationary signals. Alternatively, Wavelet Leaders exploits the wavelet self-similarity structures combined with the Multiresolution Analysis scheme. We give a brief introduction on the multifractal formalism and the particular implementation of the above methods and we compare their effectiveness. We expose several cases: Cantor measures, Binomial Multiplicative Cascades and also natural series from a tonic–clonic epileptic seizure. We analyze the results and extract the conclusions.

Suggested Citation

  • Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:14:p:2793-2805
    DOI: 10.1016/j.physa.2009.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109002568
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanley, H.E. & Afanasyev, V. & Amaral, L.A.N. & Buldyrev, S.V. & Goldberger, A.L. & Havlin, S. & Leschhorn, H. & Maass, P. & Mantegna, R.N. & Peng, C.-K. & Prince, P.A. & Salinger, M.A. & Stanley, M., 1996. "Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 302-321.
    2. Telesca, Luciano & Lapenna, Vincenzo & Macchiato, Maria, 2005. "Multifractal fluctuations in seismic interspike series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 629-640.
    3. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Ivanov, P.Ch & Keitt, T.H & Plerou, V, 2000. "Scale invariance and universality: organizing principles in complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 60-68.
    4. B. Lashermes & S. G. Roux & P. Abry & S. Jaffard, 2008. "Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 201-215, January.
    5. Castro e Silva, A. & Moreira, J.G., 1997. "Roughness exponents to calculate multi-affine fractal exponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 327-333.
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Peng, C.-K. & Buldyrev, S.V. & Goldberger, A.L. & Havlin, S. & Mantegna, R.N. & Simons, M. & Stanley, H.E., 1995. "Statistical properties of DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 221(1), pages 180-192.
    8. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mondal, Mitali & Mondal, Arindam & Mondal, Joyati & Patra, Kanchan Kumar & Deb, Argha & Ghosh, Dipak, 2018. "Evidence of centrality dependent fractal behavior in high energy heavy ion interactions: Hint of two different sources," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 230-237.
    2. Dashtian, Hassan & Jafari, G. Reza & Sahimi, Muhammad & Masihi, Mohsen, 2011. "Scaling, multifractality, and long-range correlations in well log data of large-scale porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2096-2111.
    3. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    4. Lucas Catalano & Alejandra Figliola, 2015. "Analysis of the nonlinear relationship between commodity prices in the last two decades," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1553-1558, July.
    5. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    6. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    7. Zhu, Huijian & Zhang, Weiguo, 2018. "Multifractal property of Chinese stock market in the CSI 800 index based on MF-DFA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 497-503.
    8. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    9. Ferri, Gustavo L. & Figliola, Alejandra & Rosso, Osvaldo A., 2012. "Tsallis’ statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2154-2162.
    10. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    11. Xi, Caiping & Zhang, Shunning & Xiong, Gang & Zhao, Huichang, 2016. "A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 34-50.
    12. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    2. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    3. Yang, Yan-Hong & Xie, Wen-Jie & Li, Ming-Xia & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2017. "Statistical properties of user activity fluctuations in virtual worlds," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 271-278.
    4. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    5. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    6. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    7. Fang, Wen & Tian, Shaolin & Wang, Jun, 2018. "Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 109-120.
    8. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Singularity power spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 63-73.
    9. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.
    10. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    11. Stosic, Tatijana & Telesca, Luciano & Stosic, Borko, 2021. "Multiparametric statistical and dynamical analysis of angular high-frequency wind speed time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    12. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    13. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    14. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    15. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    16. Zhongjun Wang & Mengye Sun & A. M. Elsawah, 2020. "Improving MF-DFA model with applications in precious metals market," Papers 2006.15214, arXiv.org.
    17. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    18. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    19. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    20. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:14:p:2793-2805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.