IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v508y2018icp324-341.html
   My bibliography  Save this article

Social hotspot propagation dynamics model based on heterogeneous mean field and evolutionary games

Author

Listed:
  • Li, Qian
  • Song, Chenguang
  • Wu, Bin
  • Xiao, Yunpeng
  • Wang, Bai

Abstract

In the field of social network analysis, information diffusion is a focus of current research. Taking into account the real topological relations among the participants and the psychological characteristics of the users, in this paper, a hotspot propagation model based on heterogeneous mean field and evolutionary games is proposed. First, in real social networks, the changes of hotspot’s trend could lead to the dynamic changes of users’ willingness to participate in the hot topic. This effect is reflected in the dynamic behaviors among the users. In this work, based on the evolutionary games, a dynamic evolution mechanism for users’ willingness to participate in hotspot is constructed and dynamically adjusts the infection rate of information dissemination model. Second, in view of the heterogeneity of the real network structure and the complexity of the heterogeneous mean field, graphical evolutionary game is introduced to improve the heterogeneous mean field. Thus, a new dynamics model of information dissemination is constructed based on graphical evolutionary game. Finally, considering the dynamic behavior among the nodes and the heterogeneity of real social networks, we obtain a hotspot propagation model based on dynamic evolution mechanism and improved heterogeneous mean field. To verify the proposed model, we perform simulations over synthetic networks and real network. Experiments show that the model effectively reveal the impact of different driving factors on information dissemination, and predict the trend of information dissemination in social networks.

Suggested Citation

  • Li, Qian & Song, Chenguang & Wu, Bin & Xiao, Yunpeng & Wang, Bai, 2018. "Social hotspot propagation dynamics model based on heterogeneous mean field and evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 324-341.
  • Handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:324-341
    DOI: 10.1016/j.physa.2018.05.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118306538
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Peng Zhang & Menghui Li & Liang Gao & Ying Fan & Zengru Di, 2014. "Characterizing and Modeling the Dynamics of Activity and Popularity," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-9, February.
    4. Agha Mohammad Ali Kermani, Mehrdad & Fatemi Ardestani, Seyed Farshad & Aliahmadi, Alireza & Barzinpour, Farnaz, 2017. "A novel game theoretic approach for modeling competitive information diffusion in social networks with heterogeneous nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 570-582.
    5. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Yunpeng & Wang, Zheng & Li, Qian & Li, Tun, 2019. "Dynamic model of information diffusion based on multidimensional complex network space and social game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 578-590.
    2. Sanz Nogales, Jose M. & Zazo, S., 2020. "Replicator based on imitation for finite and arbitrary networked communities," Applied Mathematics and Computation, Elsevier, vol. 378(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    2. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    4. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    5. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    7. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    8. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    9. Liu, Yun & Diao, Su-Meng & Zhu, Yi-Xiang & Liu, Qing, 2016. "SHIR competitive information diffusion model for online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 543-553.
    10. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    11. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    12. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Pan, Cheng & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2018. "An effective rumor-containing strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 80-91.
    14. Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
    15. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.
    16. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    17. Giorno, Virginia & Spina, Serena, 2016. "Rumor spreading models with random denials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 569-576.
    18. Zhao, Zhen-jun & Liu, Yong-mei & Wang, Ke-xi, 2016. "An analysis of rumor propagation based on propagation force," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 263-271.
    19. Sun, Ling & Liu, Yun & Bartolacci, Michael R. & Ting, I-Hsien, 2016. "A multi information dissemination model considering the interference of derivative information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 541-548.
    20. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:508:y:2018:i:c:p:324-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.