IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp1138-1149.html
   My bibliography  Save this article

Quantum effects on a graphene-like material with four-sublattice

Author

Listed:
  • Guo, An-Bang
  • Jiang, Wei
  • Zhang, Na

Abstract

A Heisenberg model is formed by a graphene-like material with four-sublattice, which the intralayer exchange coupling of upper layer is ferromagnetic and that of bottom layer is antiferrimagnetic. The retarded Green’s function and the linear spin-wave approximation are introduced to study the magnetic properties of the system. The effects of various parameters in the ground state properties of the system, such as the spin-wave spectra, energy gap and the magnetization have been studied. Two energy gaps are found in the spin-wave spectra. The antiferrimagnetic couplings and spin quantum numbers play important roles on energy gaps and sublattice magnetization.

Suggested Citation

  • Guo, An-Bang & Jiang, Wei & Zhang, Na, 2018. "Quantum effects on a graphene-like material with four-sublattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1138-1149.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1138-1149
    DOI: 10.1016/j.physa.2017.08.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117308889
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    2. Jiang, Wei & Guo, An-Bang & Bai, Bao-Dong & Wei, Guo-Zhu, 2007. "Low-temperature properties of ferromagnetic–antiferromagnetic double layer superlattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 377-386.
    3. Young-Woo Son & Marvin L. Cohen & Steven G. Louie, 2006. "Half-metallic graphene nanoribbons," Nature, Nature, vol. 444(7117), pages 347-349, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    3. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    4. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    5. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    6. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    7. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    9. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.
    10. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xiaoling Sun & Kun Ding, 2018. "Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1735-1748, September.
    16. Andreas Sinner & Gregor Tkachov, 2022. "Diffusive transport in the lowest Landau level of disordered 2d semimetals: the mean-square-displacement approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-17, June.
    17. Ewelina Szymczykiewicz & Ihor Bordun & Vitalii Maksymych & Myroslava Klapchuk & Zenoviy Kohut & Anatoliy Borysiuk & Yuriy Kulyk & Fedir Ivashchyshyn, 2024. "Charge Storage and Magnetic Properties Nitrogen-Containing Nanoporous Bio-Carbon," Energies, MDPI, vol. 17(4), pages 1-20, February.
    18. Yiwen Zhang & Bo Xie & Yue Yang & Yueshen Wu & Xin Lu & Yuxiong Hu & Yifan Ding & Jiadian He & Peng Dong & Jinghui Wang & Xiang Zhou & Jianpeng Liu & Zhu-Jun Wang & Jun Li, 2024. "Extremely large magnetoresistance in twisted intertwined graphene spirals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Zihe Gao & Haoqi Zhao & Tianwei Wu & Xilin Feng & Zhifeng Zhang & Xingdu Qiao & Ching-Kai Chiu & Liang Feng, 2023. "Topological quadratic-node semimetal in a photonic microring lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1138-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.