IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10124-d456682.html
   My bibliography  Save this article

Using a DEA–AutoML Approach to Track SDG Achievements

Author

Listed:
  • Bodin Singpai

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Desheng Wu

    (School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China
    College of Belt and Road, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Each country needs to monitor progress on their Sustainable Development Goals (SDGs) to develop strategies that meet the expectations of the United Nations. Data envelope analysis (DEA) can help identify best practices for SDGs by setting goals to compete against. Automated machine learning (AutoML) simplifies machine learning for researchers who need less time and manpower to predict future situations. This work introduces an integrative method that integrates DEA and AutoML to assess and predict performance in SDGs. There are two experiments with different data properties in their interval and correlation to demonstrate the approach. Three prediction targets are set to measure performance in the regression, classification, and multi-target regression algorithms. The back-propagation neural network (BPNN) is used to validate the outputs of the AutoML. As a result, AutoML can outperform BPNN for regression and classification prediction problems. Low standard deviation (SD) data result in poor prediction performance for the BPNN, but does not have a significant impact on AutoML. Highly correlated data result in a higher accuracy, but does not significantly affect the R-squared values between the actual and predicted values. This integrative approach can accurately predict the projected outputs, which can be used as national goals to transform an inefficient country into an efficient country.

Suggested Citation

  • Bodin Singpai & Desheng Wu, 2020. "Using a DEA–AutoML Approach to Track SDG Achievements," Sustainability, MDPI, vol. 12(23), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10124-:d:456682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S Lim, 2012. "Context-dependent data envelopment analysis with cross-efficiency evaluation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 38-46, January.
    2. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    3. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    4. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    5. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    6. Wen-Min Lu & Shih-Fang Lo, 2012. "Constructing stratifications for regions in China with sustainable development concerns," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(6), pages 1807-1823, October.
    7. Kwon, He-Boong, 2017. "Exploring the predictive potential of artificial neural networks in conjunction with DEA in railroad performance modeling," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 159-170.
    8. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    9. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    10. Jin, Xingye & Li, David Daokui & Wu, Shuyu, 2016. "How will China shape the world economy?," China Economic Review, Elsevier, vol. 40(C), pages 272-280.
    11. Svatava Janoušková & Tomáš Hák & Bedřich Moldan, 2018. "Global SDGs Assessments: Helping or Confusing Indicators?," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Ghasemi, Abdolrasoul & Boroumand, Yasaman & Shirazi, Masoud, 2020. "How do governments perform in facing COVID-19?," MPRA Paper 99791, University Library of Munich, Germany, revised 20 Apr 2020.
    14. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    15. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    16. Agarwal, Renu & Green, Roy & Brown, Paul J. & Tan, Hao & Randhawa, Krithika, 2013. "Determinants of quality management practices: An empirical study of New Zealand manufacturing firms," International Journal of Production Economics, Elsevier, vol. 142(1), pages 130-145.
    17. Marie-Laure Bougnol & José Dulá, 2006. "Validating DEA as a ranking tool: An application of DEA to assess performance in higher education," Annals of Operations Research, Springer, vol. 145(1), pages 339-365, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    2. Mohammad Izadikhah & Reza Farzipoor Saen, 2020. "Ranking sustainable suppliers by context-dependent data envelopment analysis," Annals of Operations Research, Springer, vol. 293(2), pages 607-637, October.
    3. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    4. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    5. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    6. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Georgios Tsaples & Jason Papathanasiou & Andreas C. Georgiou, 2022. "An Exploratory DEA and Machine Learning Framework for the Evaluation and Analysis of Sustainability Composite Indicators in the EU," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    8. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    9. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    10. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    11. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Santos, Sérgio P. & São José, José M.S., 2018. "Measuring and decomposing the gender pay gap: A new frontier approachAuthor-Name: Amado, Carla A.F," European Journal of Operational Research, Elsevier, vol. 271(1), pages 357-373.
    13. Qu, Jingjing & Wang, Baohui & Liu, Xiaohong, 2022. "A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    14. Natalia Borisovna Lubsanova & Lyudmila Bato-Zhargalovna Maksanova & Zinaida Sergeevna Eremko & Taisiya Borisovna Bardakhanova & Anna Semenovna Mikheeva, 2022. "The Eco-Efficiency of Russian Regions in North Asia: Their Green Direction of Regional Development," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    15. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    16. Andreas Dellnitz & Madjid Tavana & Rajiv Banker, 2023. "A novel median-based optimization model for eco-efficiency assessment in data envelopment analysis," Annals of Operations Research, Springer, vol. 322(2), pages 661-690, March.
    17. Ioannis E. Tsolas, 2023. "Efficiency Measurement of Lignite-Fired Power Plants in Greece Using a DEA-Bootstrap Approach," Sustainability, MDPI, vol. 15(4), pages 1-10, February.
    18. Singpai, Bodin & Wu, Desheng Dash, 2021. "An integrative approach for evaluating the environmental economic efficiency," Energy, Elsevier, vol. 215(PB).
    19. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    20. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10124-:d:456682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.