IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v1y2021i1p2-43d698263.html
   My bibliography  Save this article

Long Short-Term Memory Network for Predicting Exchange Rate of the Ghanaian Cedi

Author

Listed:
  • Adebayo Felix Adekoya

    (Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani BS0000, Ghana)

  • Isaac Kofi Nti

    (Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani BS0000, Ghana)

  • Benjamin Asubam Weyori

    (Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani BS0000, Ghana)

Abstract

An accurate prediction of the Exchange Rate (ER) serves as the basis for effective financial management, monetary policies, and long-term strategic decision making worldwide. A stable and competitive ER enables economic diversification. Economists, researchers, and investors have conducted several studies to predict trends and facts that influence the ER’s rise or fall. This paper used the Long Short-Term Memory Networks (LSTM) framework to predict the weekly exchange rate of one Ghanaian Cedis (GH₵) to three different currencies (United States Dollar, British Pound, and Euro), using Google Trends and historical macroeconomic data. We fused past exchange rates, fundamental macroeconomic variables, commodity prices (cocoa, gold, and crude oil) and public search queries (Google Trends) as input parameters. An empirical analysis using publicly available ER data from the Bank of Ghana (BoG) from January 2004 to October 2019 showed satisfactory results. We observed that the proposed LSTM model outperformed the Support Vector Regressor (SVR) and Back-propagation Neural Network (BPNN) models in accuracy and closeness metrics. That is, our LSTM model obtained (MAE = 0.033, MSE = 0.0035, RMSE = 0.0551, R2 = 0.9983, RMSLE = 0.0129 and MAPE = 0.0121) compared with SVR (MAE = 0.05, MAE = 0.005, RMSE = 0.0683, R2 = 0.9973, RMSLE = 0.0191 and MAPE = 0.0241) and BPNN (MAE = 0.04, MAE = 0.0056, RMSE = 0.0688, R2 = 0.9974, RMSLE = 0.0172 and MAPE = 0.0168). Moreover, we observed a strong positive correction (0.98–0.99) between Google Trends on the currency of focus and its exchange rate to the Ghanaian cedis. The study results show the importance of incorporating public search queries from search engines to predict the ER accurately.

Suggested Citation

  • Adebayo Felix Adekoya & Isaac Kofi Nti & Benjamin Asubam Weyori, 2021. "Long Short-Term Memory Network for Predicting Exchange Rate of the Ghanaian Cedi," FinTech, MDPI, vol. 1(1), pages 1-19, December.
  • Handle: RePEc:gam:jfinte:v:1:y:2021:i:1:p:2-43:d:698263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/1/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/1/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    2. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia & Zhang, Yi, 2019. "Exchange rate prediction redux: New models, new data, new currencies," Journal of International Money and Finance, Elsevier, vol. 95(C), pages 332-362.
    3. Angela Abbate & Massimiliano Marcellino, 2018. "Point, interval and density forecasts of exchange rates with time varying parameter models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 155-179, January.
    4. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    5. Johannes Bock, 2018. "Quantifying macroeconomic expectations in stock markets using Google Trends," Papers 1805.00268, arXiv.org.
    6. Forbes, Kristin & Hjortsoe, Ida & Nenova, Tsvetelina, 2018. "The shocks matter: Improving our estimates of exchange rate pass-through," Journal of International Economics, Elsevier, vol. 114(C), pages 255-275.
    7. Solomon SAMANHYIA & Kofi MINTAH OWARE & Frederick ANISOM-YAANSAH, 2016. "Financial Distress and Bankruptcy Prediction: Evidence from Ghana," Expert Journal of Finance, Sprint Investify, vol. 4, pages 52-65.
    8. Svitlana Galeshchuk & Sumitra Mukherjee, 2017. "Deep networks for predicting direction of change in foreign exchange rates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 100-110, October.
    9. Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
    10. Paravee Maneejuk & Woraphon Yamaka, 2019. "Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends," Mathematics, MDPI, vol. 7(11), pages 1-29, November.
    11. Adrien Auclert, 2019. "Monetary Policy and the Redistribution Channel," American Economic Review, American Economic Association, vol. 109(6), pages 2333-2367, June.
    12. Jordan Wilcoxson & Lendie Follett & Sean Severe, 2020. "Forecasting Foreign Exchange Markets Using Google Trends: Prediction Performance of Competing Models," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(4), pages 412-422, October.
    13. Adusei, Michael & Gyapong, Eddie Yaw, 2017. "The impact of macroeconomic variables on exchange rate volatility in Ghana: The Partial Least Squares Structural Equation Modelling approach," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1428-1444.
    14. Peterson Owusu Junior & George Tweneboah & Anokye M. Adam, 2019. "Interdependence of Major Exchange Rates in Ghana: A Wavelet Coherence Analysis," Journal of African Business, Taylor & Francis Journals, vol. 20(3), pages 407-430, July.
    15. Chen, Wei & Xu, Huilin & Jia, Lifen & Gao, Ying, 2021. "Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants," International Journal of Forecasting, Elsevier, vol. 37(1), pages 28-43.
    16. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    17. Nyoni, Thabani, 2018. "Modeling and Forecasting Naira / USD Exchange Rate In Nigeria: a Box - Jenkins ARIMA approach," MPRA Paper 88622, University Library of Munich, Germany, revised 19 Aug 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    2. Zuzana Rowland & George Lazaroiu & Ivana Podhorská, 2020. "Use of Neural Networks to Accommodate Seasonal Fluctuations When Equalizing Time Series for the CZK/RMB Exchange Rate," Risks, MDPI, vol. 9(1), pages 1-21, December.
    3. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    4. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Svatopluk Kapounek & Zuzana Kučerová & Evžen Kočenda, 2022. "Selective Attention in Exchange Rate Forecasting," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 210-229, May.
    6. Ha, Jongrim & Marc Stocker, M. & Yilmazkuday, Hakan, 2020. "Inflation and exchange rate pass-through," Journal of International Money and Finance, Elsevier, vol. 105(C).
    7. Chi, Tsung-Li & Liu, Hung-Tsen & Chang, Chia-Chien, 2023. "Hedging performance using google Trends–Evidence from the indian forex options market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 107-123.
    8. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    9. Aristidou, Chrystalleni & Lee, Kevin & Shields, Kalvinder, 2022. "Fundamentals, regimes and exchange rate forecasts: Insights from a meta exchange rate model," Journal of International Money and Finance, Elsevier, vol. 123(C).
    10. Cheung, Yin-Wong & Wang, Wenhao, 2022. "Uncovered interest rate parity redux: Non-uniform effects," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.
    11. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. de Souza Vasconcelos, Camila & Hadad Júnior, Eli, 2023. "Forecasting exchange rate: A bibliometric and content analysis," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 607-628.
    13. Yemba, Boniface P. & Otunuga, Olusegun Michael & Tang, Biyan & Biswas, Nabaneeta, 2023. "Nowcasting of the Short-run Euro-Dollar Exchange Rate with Economic Fundamentals and Time-varying Parameters," Finance Research Letters, Elsevier, vol. 52(C).
    14. Krystian Jaworski, 2021. "Forecasting exchange rates for Central and Eastern European currencies using country‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 977-999, September.
    15. Özyurt, Selin, 2016. "Has the exchange rate pass through recently declined in the euro area?," Working Paper Series 1955, European Central Bank.
    16. Denis Gorea & Oleksiy Kryvtsov & Tamon Takamura, 2016. "Leaning Within a Flexible Inflation-Targeting Framework: Review of Costs and Benefits," Discussion Papers 16-17, Bank of Canada.
    17. Sushant Acharya & Edouard Challe & Keshav Dogra, 2023. "Optimal Monetary Policy According to HANK," American Economic Review, American Economic Association, vol. 113(7), pages 1741-1782, July.
    18. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    19. Serdar Ozkan & Kurt Mitman & Fatih Karahan & Aaron Hedlund, 2016. "Monetary Policy, Heterogeneity and the Housing Channel," 2016 Meeting Papers 663, Society for Economic Dynamics.
    20. Emil Verner & Győző Gyöngyösi, 2020. "Household Debt Revaluation and the Real Economy: Evidence from a Foreign Currency Debt Crisis," American Economic Review, American Economic Association, vol. 110(9), pages 2667-2702, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:1:y:2021:i:1:p:2-43:d:698263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.