IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v457y2016icp52-61.html
   My bibliography  Save this article

Correlations of multiscale entropy in the FX market

Author

Listed:
  • Stosic, Darko
  • Stosic, Dusan
  • Ludermir, Teresa
  • Stosic, Tatijana

Abstract

The regularity of price fluctuations in exchange rates plays a crucial role in FX market dynamics. Distinct variations in regularity arise from economic, social and political events, such as interday trading and financial crisis. This paper applies a multiscale time-dependent entropy method on thirty-three exchange rates to analyze price fluctuations in the FX. Correlation matrices of entropy values, termed entropic correlations, are in turn used to describe global behavior of the market. Empirical results suggest a weakly correlated market with pronounced collective behavior at bi-weekly trends. Correlations arise from cycles of low and high regularity in long-term trends. Eigenvalues of the correlation matrix also indicate a dominant European market, followed by shifting American, Asian, African, and Pacific influences. As a result, we find that entropy is a powerful tool for extracting important information from the FX market.

Suggested Citation

  • Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.
  • Handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:52-61
    DOI: 10.1016/j.physa.2016.03.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300978
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
    2. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    3. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    4. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
    5. Bentes, Sónia R. & Menezes, Rui & Mendes, Diana A., 2008. "Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3826-3830.
    6. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz, 2009. "Structure and evolution of the foreign exchange networks," Papers 0901.4793, arXiv.org.
    7. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    8. Ishizaki, Ryuji & Inoue, Masayoshi, 2013. "Time-series analysis of foreign exchange rates using time-dependent pattern entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3344-3350.
    9. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    10. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz & Andrzej Gorski, 2009. "Analysis of a network structure of the foreign currency exchange market," Papers 0906.0480, arXiv.org.
    11. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Alvarez, Jesus, 2012. "A multiscale entropy approach for market efficiency," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 64-69.
    12. S. Drożdż & A. Z. Górski & J. Kwapień, 2007. "World currency exchange rate cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(4), pages 499-502, August.
    13. Liu, Li-Zhi & Qian, Xi-Yuan & Lu, Heng-Yao, 2010. "Cross-sample entropy of foreign exchange time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4785-4792.
    14. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    15. Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
    16. Kwapień, J. & Drożdż, S. & Oświe¸cimka, P., 2006. "The bulk of the stock market correlation matrix is not pure noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 589-606.
    17. Leonidas Sandoval Junior & Asher Mullokandov & Dror Y. Kenett, 2015. "Dependency Relations among International Stock Market Indices," JRFM, MDPI, vol. 8(2), pages 1-39, May.
    18. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    19. G. Oh & C. Eom & F. Wang & W.-S. Jung & H. E. Stanley & S. Kim, 2011. "Statistical properties of cross-correlation in the Korean stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 79(1), pages 55-60, January.
    20. Dror Y. Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2010. "Dynamics of Stock Market Correlations," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 330-340, November.
    21. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    22. Jarosław Kwapień & Sylwia Gworek & Stanisław Drożdż & Andrzej Górski, 2009. "Analysis of a network structure of the foreign currency exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 55-72, June.
    23. Çukur, Sadik & Eryiğit, Mehmet & Eryiğit, Resul, 2007. "Cross correlations in an emerging market financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 555-564.
    24. A. Z. Górski & S. Drożdż & J. Kwapień, 2008. "Scale free effects in world currency exchange network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 66(1), pages 91-96, November.
    25. Eom, Cheoljun & Oh, Gabjin & Jung, Woo-Sung, 2008. "Relationship between efficiency and predictability in stock price change," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5511-5517.
    26. Tong, S. & Bezerianos, A. & Paul, J. & Zhu, Y. & Thakor, N., 2002. "Nonextensive entropy measure of EEG following brain injury from cardiac arrest," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(3), pages 619-628.
    27. Rosenow, Bernd & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H, 2003. "Dynamics of cross-correlations in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 241-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jian & Jiang, Ting & Ye, Ze, 2021. "Information efficiency research of China's carbon markets," Finance Research Letters, Elsevier, vol. 38(C).
    2. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    3. Jia, Linlu & Ke, Jinchuan & Wang, Jun, 2020. "Fluctuation behavior analysis of stochastic exclusion financial dynamics with random jump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    4. Ur Rehman, Mobeen & Al Rababa'a, Abdel Razzaq & El-Nader, Ghaith & Alkhataybeh, Ahmad & Vo, Xuan Vinh, 2022. "Modelling the quantile cross-coherence between exchange rates: Does the COVID-19 pandemic change the interlinkage structure?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
    2. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    3. Mansooreh Kazemilari & Maman Abdurachman Djauhari & Zuhaimy Ismail, 2016. "Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach," Papers 1608.07694, arXiv.org.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    5. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    6. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    7. F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
    8. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    9. Benedetto, F. & Giunta, G. & Mastroeni, L., 2016. "On the predictability of energy commodity markets by an entropy-based computational method," Energy Economics, Elsevier, vol. 54(C), pages 302-312.
    10. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    11. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
    12. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    13. Leonidas Sandoval Junior, 2011. "Cluster formation and evolution in networks of financial market indices," Papers 1111.5069, arXiv.org.
    14. Liu, Jian & Jiang, Ting & Ye, Ze, 2021. "Information efficiency research of China's carbon markets," Finance Research Letters, Elsevier, vol. 38(C).
    15. Fan, Xinghua & Li, Shasha & Tian, Lixin, 2016. "Complexity of carbon market from multi-scale entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 79-85.
    16. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    17. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    18. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    19. Leonidas Sandoval Junior, 2011. "Pruning a Minimum Spanning Tree," Papers 1109.0642, arXiv.org.
    20. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:52-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.