On the predictability of energy commodity markets by an entropy-based computational method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2015.12.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014.
"Commodity futures and market efficiency,"
Energy Economics, Elsevier, vol. 42(C), pages 50-57.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Commodity futures and market efficiency," Papers 1309.1492, arXiv.org.
- Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
- Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
- Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
- Gaetano Giunta & Francesco Benedetto, 2012. "Empirical Case Study of Binary Options Trading: An Interdisciplinary Application of Telecommunications Methodology to Financial Economics," International Journal of Interdisciplinary Telecommunications and Networking (IJITN), IGI Global, vol. 4(4), pages 54-63, October.
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
- Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
- Gençay, Ramazan & Gradojevic, Nikola, 2010.
"Crash of '87 -- Was it expected?: Aggregate market fears and long-range dependence,"
Journal of Empirical Finance, Elsevier, vol. 17(2), pages 270-282, March.
- Ramazan Gencay & Nikola Gradojevic, 2009. "Crash of '87 - Was it Expected? Aggregate Market Fears and Long Range Dependence," Working Paper series 28_09, Rimini Centre for Economic Analysis.
- Darbellay, Georges A & Wuertz, Diethelm, 2000. "The entropy as a tool for analysing statistical dependences in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 429-439.
- Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
- Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Loretta Mastroeni & Pierluigi Vellucci, 2016. "“Butterfly Effect" vs Chaos in Energy Futures Markets," Departmental Working Papers of Economics - University 'Roma Tre' 0209, Department of Economics - University Roma Tre.
- Wendong Zhu & Dahai Li & Limin Han, 2022. "Spatial–Temporal Evolution and Sustainable Type Division of Fishery Science and Technology Innovation Efficiency in China," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
- Fernandes, Leonardo H.S. & de Araujo, Fernando H.A. & Silva, José W.L. & Tabak, Benjamin Miranda, 2022. "Booms in commodities price: Assessing disorder and similarity over economic cycles," Resources Policy, Elsevier, vol. 79(C).
- Anis Hoayek & Hassan Hamie & Hans Auer, 2020. "Modeling the Price Stability and Predictability of Post Liberalized Gas Markets Using the Theory of Information," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
- Loretta Mastroeni & Pierluigi Vellucci, 2022. "Construction of an SDE Model from Intraday Copper Futures Prices," Risks, MDPI, vol. 10(11), pages 1-21, November.
- Anis Hoayek & Hassan Hamie & Hans Auer, 2020. "Modeling the Price Stability and Predictability of Post Liberalized Gas Markets Using the Theory of Information," Post-Print emse-03604655, HAL.
- Loretta Mastroeni & Pierluigi Vellucci, 2016. ""Butterfly Effect" vs Chaos in Energy Futures Markets," Papers 1610.05697, arXiv.org.
- Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Gong, Jue & Li, Zhao-Chen & Zhu, You, 2024. "Who dominate the information flowing between innovative and traditional financial assets? A multiscale entropy-based approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 329-358.
- F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
- Loretta Mastroeni & Pierluigi Vellucci, 2016. ""Chaos" in energy and commodity markets: a controversial matter," Papers 1611.07432, arXiv.org, revised Mar 2017.
- Benedetto, Francesco & Mastroeni, Loretta & Quaresima, Greta & Vellucci, Pierluigi, 2020. "Does OVX affect WTI and Brent oil spot variance? Evidence from an entropy analysis," Energy Economics, Elsevier, vol. 89(C).
- Aktham Maghyereh & Hussein Abdoh, 2022. "Global financial crisis versus COVID‐19: Evidence from sentiment analysis," International Finance, Wiley Blackwell, vol. 25(2), pages 218-248, August.
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Studying the impact of fluctuations, spikes and rare events in time series through a wavelet entropy predictability measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
- Jiang, Ping-Chuan & Feng, Gen-Fu & Yang, Hao-Chang, 2022. "New measurement of sovereign ESG index," Innovation and Green Development, Elsevier, vol. 1(2).
- Loretta Mastroeni & Pierluigi Vellucci, 2017. "“Chaos” In Energy And Commodity Markets: A Controversial Matter," Departmental Working Papers of Economics - University 'Roma Tre' 0218, Department of Economics - University Roma Tre.
- Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
- Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2022. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Resources Policy, Elsevier, vol. 77(C).
- Maghyereh, Aktham & Abdoh, Hussein & Awartani, Basel, 2022. "Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?," Journal of Commodity Markets, Elsevier, vol. 26(C).
- Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
- Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
- Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
- Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & Stosic, Tatijana, 2016. "Correlations of multiscale entropy in the FX market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 52-61.
- Argyroudis, George S. & Siokis, Fotios M., 2019. "Spillover effects of Great Recession on Hong-Kong’s Real Estate Market: An analysis based on Causality Plane and Tsallis Curves of Complexity–Entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 576-586.
- Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
- Liu, Jian & Jiang, Ting & Ye, Ze, 2021. "Information efficiency research of China's carbon markets," Finance Research Letters, Elsevier, vol. 38(C).
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
- Stosic, Darko & Stosic, Dusan & Ludermir, Teresa & de Oliveira, Wilson & Stosic, Tatijana, 2016. "Foreign exchange rate entropy evolution during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 233-239.
- Charles, Amélie & Darné, Olivier, 2014.
"Volatility persistence in crude oil markets,"
Energy Policy, Elsevier, vol. 65(C), pages 729-742.
- Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
- Amélie Charles & Olivier Darné, 2014. "Volatility persistence in crude oil markets," Post-Print hal-00940312, HAL.
- Aurelio F. Bariviera & Luciano Zunino & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "Efficiency and credit ratings: a permutation-information-theory analysis," Papers 1509.01839, arXiv.org.
- Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Espinosa-Paredes, Gilberto, 2012. "Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5643-5647.
- Fan, Xinghua & Li, Shasha & Tian, Lixin, 2016. "Complexity of carbon market from multi-scale entropy analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 79-85.
- Siokis, Fotios M., 2018. "Credit market Jitters in the course of the financial crisis: A permutation entropy approach in measuring informational efficiency in financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 266-275.
- Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2009. "Forbidden patterns, permutation entropy and stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2854-2864.
- Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
More about this item
Keywords
Computational methods; Entropy analysis; Market efficiency; Energy commodity markets; Risk management science;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:54:y:2016:i:c:p:302-312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.