IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v453y2016icp173-183.html
   My bibliography  Save this article

Transition from lognormal to χ2-superstatistics for financial time series

Author

Listed:
  • Xu, Dan
  • Beck, Christian

Abstract

Share price returns on different time scales can be well modelled by a superstatistical dynamics. Here we provide an investigation which type of superstatistics is most suitable to properly describe share price dynamics on various time scales. It is shown that while χ2-superstatistics works well on a time scale of days, on a much smaller time scale of minutes the price changes are better described by lognormal superstatistics. The system dynamics thus exhibits a transition from lognormal to χ2 superstatistics as a function of time scale. We discuss a more general model interpolating between both statistics which fits the observed data very well. We also present results on correlation functions of the extracted superstatistical volatility parameter, which exhibits exponential decay for returns on large time scales, whereas for returns on small time scales there are long-range correlations and power-law decay.

Suggested Citation

  • Xu, Dan & Beck, Christian, 2016. "Transition from lognormal to χ2-superstatistics for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 173-183.
  • Handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:173-183
    DOI: 10.1016/j.physa.2016.02.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116002235
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Cotter, 2005. "Uncovering long memory in high frequency UK futures," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 325-337.
    2. Evans, Kevin P. & Speight, Alan E.H., 2010. "Intraday periodicity, calendar and announcement effects in Euro exchange rate volatility," Research in International Business and Finance, Elsevier, vol. 24(1), pages 82-101, January.
    3. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    4. Vicente, Renato & de Toledo, Charles M. & Leite, Vitor B.P. & Caticha, Nestor, 2006. "Underlying dynamics of typical fluctuations of an emerging market price index: The Heston model from minutes to months," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 272-288.
    5. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    6. S. M.D. Queirós & C. Tsallis, 2005. "On the connection between financial processes with stochastic volatility and nonextensive statistical mechanics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 48(1), pages 139-148, November.
    7. Katz, Y.A. & Tian, L., 2014. "Superstatistical fluctuations in time series of leverage returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 326-331.
    8. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    9. Biró, T.S. & Rosenfeld, R., 2008. "Microscopic origin of non-Gaussian distributions of financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1603-1612.
    10. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    11. Katz, Yuri A. & Tian, Li, 2013. "q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4989-4996.
    12. Camilleri, Silvio John, 2008. "Month-Related Seasonality of Stock Price Volatility: Evidence from the Malta Stock Exchange," MPRA Paper 62493, University Library of Munich, Germany.
    13. Erik Van der Straeten & Christian Beck, 2009. "Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence," Papers 0901.2271, arXiv.org, revised Sep 2009.
    14. Silvio M. Duarte Queiros & Constantino Tsallis, 2005. "On the connection between financial processes with stochastic volatility and nonextensive statistical mechanics," Papers cond-mat/0502151, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markelov, Oleg & Nguyen Duc, Viet & Bogachev, Mikhail, 2017. "Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 48-60.
    2. Sandhya Devi, 2021. "Asymmetric Tsallis distributions for modelling financial market dynamics," Papers 2102.04532, arXiv.org.
    3. Arias-Calluari, Karina & Najafi, Morteza. N. & Harré, Michael S. & Tang, Yaoyue & Alonso-Marroquin, Fernando, 2022. "Testing stationarity of the detrended price return in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Karina Arias-Calluari & Morteza. N. Najafi & Michael S. Harr'e & Fernando Alonso-Marroquin, 2019. "Stationarity of the detrended price return in stock markets," Papers 1910.01034, arXiv.org, revised Aug 2020.
    5. Yusuke Uchiyama & Takanori Kadoya, 2018. "Superstatistics with cut-off tails for financial time series," Papers 1809.04775, arXiv.org.
    6. Geoffrey Ducournau, 2021. "Bayesian inference and superstatistics to describe long memory processes of financial time series," Papers 2105.04171, arXiv.org.
    7. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
    2. Geoffrey Ducournau, 2021. "Bayesian inference and superstatistics to describe long memory processes of financial time series," Papers 2105.04171, arXiv.org.
    3. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    4. Sobhesh Kumar Agarwalla & Ajay Pandey, 2013. "Expiration‐Day Effects and the Impact of Short Trading Breaks on Intraday Volatility: Evidence from the Indian Market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(11), pages 1046-1070, November.
    5. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    6. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
    7. Carlos P. Barros & Luis A. Gil-Alana & Zhongfei Chen, 2016. "Exchange rate persistence of the Chinese yuan against the US dollar in the NDF market," Empirical Economics, Springer, vol. 51(4), pages 1399-1414, December.
    8. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    9. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    10. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    11. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    12. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    13. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    14. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    15. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
    16. Dominguez, Kathryn M.E., 2006. "When do central bank interventions influence intra-daily and longer-term exchange rate movements?," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1051-1071, November.
    17. Haniff, Mohd Nizal & Pok, Wee Ching, 2010. "Intraday volatility and periodicity in the Malaysian stock returns," Research in International Business and Finance, Elsevier, vol. 24(3), pages 329-343, September.
    18. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    20. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:173-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.