IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v394y2014icp24-32.html
   My bibliography  Save this article

Stability analysis of an SIS epidemic model with feedback mechanism on networks

Author

Listed:
  • Zhang, Jiancheng
  • Sun, Jitao

Abstract

In this paper, an epidemic model with feedback mechanism on networks is investigated. We obtain the basic reproductive number R0, and analyze the stability behaviors of disease-free equilibrium E0 and endemic equilibrium E∗. When R0<1, the disease-free equilibrium is globally asymptotically stable, and when R0>1, the endemic equilibrium is asymptotically stable. Although the feedback mechanism cannot change the basic reproductive number R0 as we prove, it should be indicated that it can weaken the spreading of diseases and reduce the endemic level. Finally, the results of the stability and the effectiveness of the feedback mechanism are illustrated by some numerical simulations.

Suggested Citation

  • Zhang, Jiancheng & Sun, Jitao, 2014. "Stability analysis of an SIS epidemic model with feedback mechanism on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 24-32.
  • Handle: RePEc:eee:phsmap:v:394:y:2014:i:c:p:24-32
    DOI: 10.1016/j.physa.2013.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113009357
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qiming & Li, Hua, 2019. "Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 289-296.
    2. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    3. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    4. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    5. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    6. Huo, Jingjing & Zhao, Hongyong, 2016. "Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 41-56.
    7. Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
    8. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    9. Qu, Leilei & Gao, Xubin & Kang, Baolin & He, Mingfeng & Pan, Qiuhui, 2019. "Population dynamics models based on the transmission mechanism of MCR-1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 310-323.
    10. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
    12. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    13. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2020. "Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    15. Nian, Fuzhong & Liu, Jinshuo, 2021. "Feedback driven message spreading on network," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    16. Li, Hong-Li & Zhang, Long & Teng, Zhidong & Jiang, Yao-Lin & Muhammadhaji, Ahmadjan, 2018. "Global stability of an SI epidemic model with feedback controls in a patchy environment," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 372-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:394:y:2014:i:c:p:24-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.