IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp587-599.html
   My bibliography  Save this article

Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate

Author

Listed:
  • Liu, Lijun
  • Wei, Xiaodan
  • Zhang, Naimin

Abstract

This paper studies the dynamics of a network-based SIRS epidemic model with vaccination and a nonmonotone incidence rate. This type of nonlinear incidence can be used to describe the psychological or inhibitory effect from the behavioral change of the susceptible individuals when the number of infective individuals on heterogeneous networks is getting larger. Using the analytical method, epidemic threshold R0 is obtained. When R0 is less than one, we prove the disease-free equilibrium is globally asymptotically stable and the disease dies out, while R0 is greater than one, there exists a unique endemic equilibrium. By constructing a suitable Lyapunov function, we also prove the endemic equilibrium is globally asymptotically stable if the inhibitory factor α is sufficiently large. Numerical experiments are also given to support the theoretical results. It is shown both theoretically and numerically a larger α can accelerate the extinction of the disease and reduce the level of disease.

Suggested Citation

  • Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:587-599
    DOI: 10.1016/j.physa.2018.09.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312688
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Guanghu & Chen, Guanrong & Fu, Xinchu, 2017. "Effects of active links on epidemic transmission over social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 614-621.
    2. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.
    3. Zhang, Jiancheng & Sun, Jitao, 2014. "Stability analysis of an SIS epidemic model with feedback mechanism on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 24-32.
    4. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    5. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xinxin & Wang, Yi & Huang, Gang, 2021. "Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Fu, Minglei & Feng, Jun & Lande, Dmytro & Dmytrenko, Oleh & Manko, Dmytro & Prakapovich, Ryhor, 2021. "Dynamic model with super spreaders and lurker users for preferential information propagation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    3. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Zhang, Yuexia & Pan, Dawei, 2021. "Layered SIRS model of information spread in complex networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    2. Cheng, Xinxin & Wang, Yi & Huang, Gang, 2021. "Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Liu, Qiming & Li, Hua, 2019. "Global dynamics analysis of an SEIR epidemic model with discrete delay on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 289-296.
    5. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    6. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    7. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    8. Leyi Zheng & Longkun Tang, 2019. "A Node-Based SIRS Epidemic Model with Infective Media on Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, February.
    9. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    10. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    11. Noel Rapa, 2021. "Mitigation measures, prevalence response and public mobility during the COVID-19 emergency," CBM Working Papers WP/03/2021, Central Bank of Malta.
    12. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    13. Caroline Orset, 2018. "People’s perception and cost-effectiveness of home confinement during an influenza pandemic: evidence from the French case," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1335-1350, December.
    14. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    15. Qu, Leilei & Gao, Xubin & Kang, Baolin & He, Mingfeng & Pan, Qiuhui, 2019. "Population dynamics models based on the transmission mechanism of MCR-1," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 310-323.
    16. Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2021. "Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 199-231.
    17. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    18. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    19. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.
    20. Lan, Guijie & Song, Baojun & Yuan, Sanling, 2023. "Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:587-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.