IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp93-105.html
   My bibliography  Save this article

Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction

Author

Listed:
  • Jia, Nan
  • Ding, Li
  • Liu, Yu-Jing
  • Hu, Ping

Abstract

In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac’s criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.

Suggested Citation

  • Jia, Nan & Ding, Li & Liu, Yu-Jing & Hu, Ping, 2018. "Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 93-105.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:93-105
    DOI: 10.1016/j.physa.2018.02.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301432
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    2. Chongjun Fan & Yang Jin & Liang-An Huo & Chen Liu & Yunpeng Yang, 2017. "Epidemic spreading of interacting diseases with activity of nodes reshapes the critical threshold," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(01), pages 1-12, January.
    3. Pu, Cunlai & Li, Siyuan & Yang, XianXia & Xu, Zhongqi & Ji, Zexuan & Yang, Jian, 2016. "Traffic-driven SIR epidemic spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 129-137.
    4. Feng, Yun & Fan, Qingli & Ma, Lin & Ding, Li, 2014. "Epidemic spreading on uniform networks with two interacting diseases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 277-285.
    5. Pires, Marcelo A. & Crokidakis, Nuno, 2017. "Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 167-179.
    6. Zhang, Jiancheng & Sun, Jitao, 2014. "Stability analysis of an SIS epidemic model with feedback mechanism on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 24-32.
    7. Haibo Hu & Jonathan J. H. Zhu, 2017. "Social networks, mass media and public opinions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 393-411, July.
    8. M E J Newman & Carrie R Ferrario, 2013. "Interacting Epidemics and Coinfection on Contact Networks," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    9. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    10. Zhang, Huiling & Guan, Zhi-Hong & Li, Tao & Zhang, Xian-He & Zhang, Ding-Xue, 2013. "A stochastic SIR epidemic on scale-free network with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 974-981.
    11. Li, Jinhui & Teng, Zhidong & Wang, Guangqing & Zhang, Long & Hu, Cheng, 2017. "Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 63-71.
    12. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Complex interdependent supply chain networks: Cascading failure and robustness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 58-69.
    13. Zaman, Gul & Kang, Yong Han & Cho, Giphil & Jung, Il Hyo, 2017. "Optimal strategy of vaccination & treatment in an SIR epidemic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 63-77.
    14. Andrzej Grabowski, 2014. "The influence of age-age correlations on epidemic spreading in social network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-5, July.
    15. Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Ping & Geng, Dongqing & Lin, Tao & Ding, Li, 2021. "Coupled propagation dynamics on multiplex activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Sang, Chunyan & Li, Tun & Tian, Sirui & Xiao, Yunpeng & Xu, Guangxia, 2019. "SFTRD: A novel information propagation model in heterogeneous networks: Modeling and restraining strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 475-490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    2. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    3. Schaum, Alexander & Bernal Jaquez, Roberto, 2016. "Estimating the state probability distribution for epidemic spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 197-206.
    4. Tingqiang Chen & Lei Wang & Jining Wang & Qi Yang, 2017. "A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency," Complexity, Hindawi, vol. 2017, pages 1-16, December.
    5. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    6. repec:hin:complx:9876013 is not listed on IDEAS
    7. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    9. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    10. X. Zhang & L. D. Valdez & H. E. Stanley & L. A. Braunstein, 2019. "Modeling Risk Contagion in the Venture Capital Market: A Multilayer Network Approach," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    11. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    12. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    13. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    14. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    16. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Yuhao Wang & Jiaxian Shen & Jinnan Pan & Tingqiang Chen, 2022. "A Credit Risk Contagion Intensity Model of Supply Chain Enterprises under Different Credit Modes," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    18. Fang, Yinhai & Xu, Haiyan & Perc, Matjaž & Tan, Qingmei, 2019. "Dynamic evolution of economic networks under the influence of mergers and divestitures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 89-99.
    19. F. Jacobs & S. Galam, 2019. "Two-Opinions-Dynamics Generated By Inflexibles And Non-Contrarian And Contrarian Floaters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-30, June.
    20. Saha, Pritam & Mondal, Bapin & Ghosh, Uttam, 2023. "Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    21. Jing, Ke & Du, Xinru & Shen, Lixin & Tang, Liang, 2019. "Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:93-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.