IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v427y2015icp234-243.html
   My bibliography  Save this article

Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate

Author

Listed:
  • Li, Chun-Hsien

Abstract

This paper studies the dynamics of a network-based SIS epidemic model with nonmonotone incidence rate. This type of nonlinear incidence can be used to describe the psychological effect of certain diseases spread in a contact network at high infective levels. We first find a threshold value for the transmission rate. This value completely determines the dynamics of the model and interestingly, the threshold is not dependent on the functional form of the nonlinear incidence rate. Furthermore, if the transmission rate is less than or equal to the threshold value, the disease will die out. Otherwise, it will be permanent. Numerical experiments are given to illustrate the theoretical results. We also consider the effect of the nonlinear incidence on the epidemic dynamics.

Suggested Citation

  • Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
  • Handle: RePEc:eee:phsmap:v:427:y:2015:i:c:p:234-243
    DOI: 10.1016/j.physa.2015.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115001235
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Meng & Chen, Guanrong & Fu, Xinchu, 2011. "A modified SIS model with an infective medium on complex networks and its global stability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2408-2413.
    2. Zhang, Jiancheng & Sun, Jitao, 2014. "Stability analysis of an SIS epidemic model with feedback mechanism on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 24-32.
    3. Wang, Jia-zeng & Liu, Zeng-rong & Xu, Jianhua, 2007. "Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 715-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    2. Cheng, Xinxin & Wang, Yi & Huang, Gang, 2021. "Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    3. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.
    4. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    5. Lan, Guijie & Song, Baojun & Yuan, Sanling, 2023. "Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    7. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    8. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    9. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    10. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.
    2. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Juang, Jonq & Liang, Yu-Hao, 2015. "Analysis of a general SIS model with infective vectors on the complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 382-395.
    4. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    5. Li, Jingjing & Zhang, Yumei & Man, Jiayu & Zhou, Yun & Wu, Xiaojun, 2017. "SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 740-749.
    6. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    7. Li, Tao & Liu, Xiongding & Wu, Jie & Wan, Chen & Guan, Zhi-Hong & Wang, Yuanmei, 2016. "An epidemic spreading model on adaptive scale-free networks with feedback mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 649-656.
    8. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    9. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    10. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    11. Wu, Yingbo & Li, Pengdeng & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2017. "A theoretical method for assessing disruptive computer viruses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 325-336.
    12. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.
    13. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    14. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    15. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    16. Curado, Manuel & Rodriguez, Rocio & Tortosa, Leandro & Vicent, Jose F., 2022. "Anew centrality measure in dense networks based on two-way random walk betweenness," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    17. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    18. Wu, Yanlei & Yang, Yang & Jiang, Fei & Jin, Shuyuan & Xu, Jin, 2014. "Coritivity-based influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 467-480.
    19. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    20. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:427:y:2015:i:c:p:234-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.