IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v424y2015icp1-10.html
   My bibliography  Save this article

Stochastic simulation of the circadian rhythmicity in the SCN neuronal network

Author

Listed:
  • Šimonka, Vito
  • Fras, Maja
  • Gosak, Marko

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus is the mammalian circadian pacemaker that plays a dominant role in the generation and control of daily physiological and behavioral rhythms. The coupling of the SCN neuronal activity with the solar day–night cycle and the intercellular communication between SCN neurons are the most important factors that ensure the precise 24 h timing of the circadian rhythmicity. In individual cells, however, the timekeeping is not precise because of the inherent randomness in the biochemical reactions. In order to investigate the impact of molecular noise and intercellular connectivity on the circadian network synchronization, we develop a stochastic multicellular model of the SCN. The circadian pacemaker is modeled as a realistic small-world network of neurons and was found to be robust to rather high levels of intrinsic fluctuations. We show that the SCN neuronal network synchronizes well with the photic entraining even at very large levels of stochasticity, whereby intercellular coupling is the required agent that ensures coherent oscillations. Furthermore, we show that the neuronal activity patterns form localized clusters, which are more pronounced in short photoperiods than in long days. The localized synchronization behavior was also found to be affected by the SCN network structure.

Suggested Citation

  • Šimonka, Vito & Fras, Maja & Gosak, Marko, 2015. "Stochastic simulation of the circadian rhythmicity in the SCN neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 1-10.
  • Handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:1-10
    DOI: 10.1016/j.physa.2014.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010760
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masao Doi & Atsushi Ishida & Akiko Miyake & Miho Sato & Rie Komatsu & Fumiyoshi Yamazaki & Ikuo Kimura & Soken Tsuchiya & Hiroshi Kori & Kazuyuki Seo & Yoshiaki Yamaguchi & Masahiro Matsuo & Jean-Mich, 2011. "Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    2. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    3. Albert Goldbeter, 2002. "Computational approaches to cellular rhythms," Nature, Nature, vol. 420(6912), pages 238-245, November.
    4. Naama Barkai & Stanislas Leibler, 2000. "Circadian clocks limited by noise," Nature, Nature, vol. 403(6767), pages 267-268, January.
    5. G. Bordyugov & A. Granada & H. Herzel, 2011. "How coupling determines the entrainment of circadian clocks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(3), pages 227-234, August.
    6. M. Gosak & M. Perc & S. Kralj, 2011. "Stochastic resonance in a locally excited system of bistable oscillators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(4), pages 519-528, April.
    7. Henson, Michael A., 2013. "Multicellular models of intercellular synchronization in circadian neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 48-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markovič, Rene & Gosak, Marko & Marhl, Marko, 2014. "Broad-scale small-world network topology induces optimal synchronization of flexible oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 14-21.
    2. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    3. Irene Otero-Muras & Julio R Banga, 2016. "Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-26, December.
    4. Wang, Li & Gong, Yubing & Lin, Xiu, 2012. "Ordered chaotic bursting and multiple coherence resonance by time-periodic coupling strength in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 131-136.
    5. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    6. Marcus Berliant & Axel H. Watanabe, 2018. "A scale‐free transportation network explains the city‐size distribution," Quantitative Economics, Econometric Society, vol. 9(3), pages 1419-1451, November.
    7. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    8. Khalilzadeh, Jalayer, 2022. "It is a small world, or is it? A look into two decades of tourism system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    9. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    10. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    11. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    12. Gao, Xiangyun & An, Haizhong & Fang, Wei & Li, Huajiao & Sun, Xiaoqi, 2014. "The transmission of fluctuant patterns of the forex burden based on international crude oil prices," Energy, Elsevier, vol. 73(C), pages 380-386.
    13. Jie Chen & Kuang‐Chao Chang, 2008. "Discovering Statistically Significant Periodic Gene Expression," International Statistical Review, International Statistical Institute, vol. 76(2), pages 228-246, August.
    14. Treenut Saithong & Kevin J Painter & Andrew J Millar, 2010. "Consistent Robustness Analysis (CRA) Identifies Biologically Relevant Properties of Regulatory Network Models," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    15. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    16. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 170-179.
    17. Huang, Chung-Yuan & Chin, Wei-Chien-Benny & Fu, Yu-Hsiang & Tsai, Yu-Shiuan, 2019. "Beyond bond links in complex networks:Local bridges, global bridges and silk links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Mark Newman, 1999. "Small Worlds: The Structure of Social Networks," Working Papers 99-12-080, Santa Fe Institute.
    19. Wassim Abou-Jaoudé & Madalena Chaves & Jean-Luc Gouzé, 2011. "A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-12, February.
    20. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:424:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.