IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0166867.html
   My bibliography  Save this article

Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis

Author

Listed:
  • Irene Otero-Muras
  • Julio R Banga

Abstract

From cyanobacteria to human, sustained oscillations coordinate important biological functions. Although much has been learned concerning the sophisticated molecular mechanisms underlying biological oscillators, design principles linking structure and functional behavior are not yet fully understood. Here we explore design principles of biological oscillators from a multiobjective optimization perspective, taking into account the trade-offs between conflicting performance goals or demands. We develop a comprehensive tool for automated design of oscillators, based on multicriteria global optimization that allows two modes: (i) the automatic design (forward problem) and (ii) the inference of design principles (reverse analysis problem). From the perspective of synthetic biology, the forward mode allows the solution of design problems that mimic some of the desirable properties appearing in natural oscillators. The reverse analysis mode facilitates a systematic exploration of the design space based on Pareto optimality concepts. The method is illustrated with two case studies: the automatic design of synthetic oscillators from a library of biological parts, and the exploration of design principles in 3-gene oscillatory systems.

Suggested Citation

  • Irene Otero-Muras & Julio R Banga, 2016. "Design Principles of Biological Oscillators through Optimization: Forward and Reverse Analysis," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-26, December.
  • Handle: RePEc:plo:pone00:0166867
    DOI: 10.1371/journal.pone.0166867
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166867
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0166867&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0166867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Goldbeter, 2002. "Computational approaches to cellular rhythms," Nature, Nature, vol. 420(6912), pages 238-245, November.
    2. Naama Barkai & Stanislas Leibler, 2000. "Circadian clocks limited by noise," Nature, Nature, vol. 403(6767), pages 267-268, January.
    3. Michael B. Elowitz & Stanislas Leibler, 2000. "A synthetic oscillatory network of transcriptional regulators," Nature, Nature, vol. 403(6767), pages 335-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bob Sluijs & Roel J. M. Maas & Ardjan J. Linden & Tom F. A. Greef & Wilhelm T. S. Huck, 2022. "A microfluidic optimal experimental design platform for forward design of cell-free genetic networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    2. Bottani, Samuel & Grammaticos, Basile, 2008. "A simple model of genetic oscillations through regulated degradation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1468-1482.
    3. Šimonka, Vito & Fras, Maja & Gosak, Marko, 2015. "Stochastic simulation of the circadian rhythmicity in the SCN neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 1-10.
    4. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    5. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    6. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    7. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Margherita Carletti & Malay Banerjee, 2019. "A Backward Technique for Demographic Noise in Biological Ordinary Differential Equation Models," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
    9. Weiyue Ji & Handuo Shi & Haoqian Zhang & Rui Sun & Jingyi Xi & Dingqiao Wen & Jingchen Feng & Yiwei Chen & Xiao Qin & Yanrong Ma & Wenhan Luo & Linna Deng & Hanchi Lin & Ruofan Yu & Qi Ouyang, 2013. "A Formalized Design Process for Bacterial Consortia That Perform Logic Computing," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    10. Jie Chen & Kuang‐Chao Chang, 2008. "Discovering Statistically Significant Periodic Gene Expression," International Statistical Review, International Statistical Institute, vol. 76(2), pages 228-246, August.
    11. Konstantinos I Papadimitriou & Guy-Bart V Stan & Emmanuel M Drakakis, 2013. "Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-24, February.
    12. Treenut Saithong & Kevin J Painter & Andrew J Millar, 2010. "Consistent Robustness Analysis (CRA) Identifies Biologically Relevant Properties of Regulatory Network Models," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    13. Inés P Mariño & Alexey Zaikin & Joaquín Míguez, 2017. "A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-25, August.
    14. Zhdanov, Vladimir P., 2012. "Periodic perturbation of genetic oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 577-587.
    15. Dhiman, Aman & Poria, Swarup, 2018. "Allee effect induced diversity in evolutionary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 32-38.
    16. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Chen Jia & Ramon Grima, 2024. "Holimap: an accurate and efficient method for solving stochastic gene network dynamics," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. T. Ochiai & J. C. Nacher, 2007. "Stochastic analysis of autoregulatory gene expression dynamics," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 14(4), pages 377-388, November.
    19. Thomas B. Kepler & Timothy C. Elston, 2001. "Stochasticity in Transcriptional Regulation: Origins, Consequences and Mathematical Representations," Working Papers 01-06-033, Santa Fe Institute.
    20. Luis Mier-y-Terán-Romero & Mary Silber & Vassily Hatzimanikatis, 2010. "The Origins of Time-Delay in Template Biopolymerization Processes," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-15, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0166867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.