IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i6p1259-1264.html
   My bibliography  Save this article

Collaborative filtering with diffusion-based similarity on tripartite graphs

Author

Listed:
  • Shang, Ming-Sheng
  • Zhang, Zi-Ke
  • Zhou, Tao
  • Zhang, Yi-Cheng

Abstract

Collaborative tags are playing a more and more important role for the organization of information systems. In this paper, we study a personalized recommendation model making use of the ternary relations among users, objects and tags. We propose a measure of user similarity based on his preference and tagging information. Two kinds of similarities between users are calculated by using a diffusion-based process, which are then integrated for recommendation. We test the proposed method in a standard collaborative filtering framework with three metrics: ranking score, Recall and Precision, and demonstrate that it performs better than the commonly used cosine similarity.

Suggested Citation

  • Shang, Ming-Sheng & Zhang, Zi-Ke & Zhou, Tao & Zhang, Yi-Cheng, 2010. "Collaborative filtering with diffusion-based similarity on tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1259-1264.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:6:p:1259-1264
    DOI: 10.1016/j.physa.2009.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109009753
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yin & Zhang, Bin & Gao, Kening & Guo, Pengwei & Sun, Daming, 2012. "Combining content and relation analysis for recommendation in social tagging systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5759-5768.
    2. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    3. Li, Jianguo & Tang, Yong & Chen, Jiemin, 2017. "Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 398-411.
    4. Ramezani, Mohsen & Moradi, Parham & Akhlaghian, Fardin, 2014. "A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 72-84.
    5. Abdul Khalique Shaikh & Saadat M. Alhashmi & Rajendran Parthiban, 2016. "A Proximity and Semantic-Aware Optimisation Model for Sub-Domain-Based Decentralised Resource Discovery in Grid Computing," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-25, June.
    6. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    7. Yin, Chun-Xia & Peng, Qin-Ke & Chu, Tao, 2012. "Personal artist recommendation via a listening and trust preference network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 1991-1999.
    8. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    9. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:6:p:1259-1264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.