IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i18p4127-4133.html
   My bibliography  Save this article

Morphological similarity of road networks and cracks

Author

Listed:
  • Ohnishi, Teruaki
  • Okada, Osami
  • Shirakata, Hirofumi

Abstract

An investigation was made regarding to what extent road network patterns are reproduced by a crack model from a viewpoint that they seem to resemble crack patterns in morphology. A desiccation model using double-layered cellular meshes was considered with the parameters representing the anisotropy of the material and the coarseness of grains, together with the introduction of singularities in points and in lines. The model can generally reproduce the real crack patterns and the road network patterns of cities with characteristic morphology by appropriately choosing the values of parameters, indicating that the similar mechanism acts on the formation of road networks and cracks of material although the relevant scales of space time differ from each other. Factors which make the road networks more complex and irregular in morphology were also investigated.

Suggested Citation

  • Ohnishi, Teruaki & Okada, Osami & Shirakata, Hirofumi, 2013. "Morphological similarity of road networks and cracks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4127-4133.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:18:p:4127-4133
    DOI: 10.1016/j.physa.2013.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113003555
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadhukhan, Supti & Dutta, Tapati & Tarafdar, Sujata, 2011. "Crack formation in composites through a spring model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 731-740.
    2. Dirk Helbing & Joachim Keltsch & Péter Molnár, 1997. "Modelling the evolution of human trail systems," Nature, Nature, vol. 388(6637), pages 47-50, July.
    3. Toshiyuki Nakagaki & Hiroyasu Yamada & Ágota Tóth, 2000. "Maze-solving by an amoeboid organism," Nature, Nature, vol. 407(6803), pages 470-470, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Adamatzky & Olivier Allard & Jeff Jones & Rachel Armstrong, 2017. "Evaluation of French motorway network in relation to slime mould transport networks," Environment and Planning B, , vol. 44(2), pages 364-383, March.
    2. Parviz, Hadi & Fakoor, Mahdi, 2020. "Free vibration of a composite plate with spatially varying Gaussian properties under uncertain thermal field using assumed mode method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Gašper Jaklič & Tadej Kanduč & Selena Praprotnik & Emil Žagar, 2012. "Energy Minimizing Mountain Ascent," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 680-693, November.
    4. Mehdi Moussaïd & Elsa G Guillot & Mathieu Moreau & Jérôme Fehrenbach & Olivier Chabiron & Samuel Lemercier & Julien Pettré & Cécile Appert-Rolland & Pierre Degond & Guy Theraulaz, 2012. "Traffic Instabilities in Self-Organized Pedestrian Crowds," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-10, March.
    5. Guangzhi Han & Haifeng Jiang & Liansheng Lu & Shanshan Ma & Shuo Xiao, 2018. "Physarum-inspired multi-parameter adaptive routing protocol for coal mine hybrid wireless mesh networks," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    6. Jiang, Rui & Wu, Qing-Song, 2006. "The moving behavior of a large object in the crowds in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 457-463.
    7. Manuel Stein & Halldór Janetzko & Daniel Seebacher & Alexander Jäger & Manuel Nagel & Jürgen Hölsch & Sven Kosub & Tobias Schreck & Daniel A. Keim & Michael Grossniklaus, 2017. "How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects," Data, MDPI, vol. 2(1), pages 1-23, January.
    8. Siddharth Patwardhan & Marc Barthelemy & Şirag Erkol & Santo Fortunato & Filippo Radicchi, 2024. "Symmetry breaking in optimal transport networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Goldsztein, Guillermo H., 2017. "Crowd of individuals walking in opposite directions. A toy model to study the segregation of the group into lanes of individuals moving in the same direction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 162-173.
    11. Jiang, Rui & Wu, Qing-Song, 2006. "Interaction between vehicle and pedestrians in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 239-246.
    12. Le-le Cao & Xiao-xue Li & Fen-ni Kang & Chang Liu & Fu-chun Sun & Ramamohanarao Kotagiri, 2015. "The Quantitative and Qualitative Evaluation of a Multi-Agent Microsimulation Model for Subway Carriage Design," International Journal of Microsimulation, International Microsimulation Association, vol. 8(3), pages 6-40.
    13. Takatomo Mihana & Yuta Terashima & Makoto Naruse & Song-Ju Kim & Atsushi Uchida, 2018. "Memory Effect on Adaptive Decision Making with a Chaotic Semiconductor Laser," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    14. Czirók, András & Vicsek, Tamás, 2000. "Collective behavior of interacting self-propelled particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 17-29.
    15. Gao, Cai & Yan, Chao & Zhang, Zili & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "An amoeboid algorithm for solving linear transportation problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 179-186.
    16. Haque, Ruhul A.I. & Mitra, Atish J. & Tarafdar, Sujata & Dutta, Tapati, 2023. "Evolution of polygonal crack patterns in mud when subjected to repeated wetting–drying cycles," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    18. Xiaoge Zhang & Andrew Adamatzky & Felix T. S. Chan & Sankaran Mahadevan & Yong Deng, 2017. "Physarum solver: a bio-inspired method for sustainable supply chain network design problem," Annals of Operations Research, Springer, vol. 254(1), pages 533-552, July.
    19. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    20. Niizato, Takayuki & Gunji, Yukio-Pegio, 2011. "Metric–topological interaction model of collective behavior," Ecological Modelling, Elsevier, vol. 222(17), pages 3041-3049.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:18:p:4127-4133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.