Evaluation of French motorway network in relation to slime mould transport networks
Author
Abstract
Suggested Citation
DOI: 10.1177/0265813515626924
Download full text from publisher
References listed on IDEAS
- Toshiyuki Nakagaki & Hiroyasu Yamada & Ágota Tóth, 2000. "Maze-solving by an amoeboid organism," Nature, Nature, vol. 407(6803), pages 470-470, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Cai & Yan, Chao & Zhang, Zili & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "An amoeboid algorithm for solving linear transportation problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 179-186.
- Xiaoge Zhang & Andrew Adamatzky & Felix T. S. Chan & Sankaran Mahadevan & Yong Deng, 2017. "Physarum solver: a bio-inspired method for sustainable supply chain network design problem," Annals of Operations Research, Springer, vol. 254(1), pages 533-552, July.
- Guangzhi Han & Haifeng Jiang & Liansheng Lu & Shanshan Ma & Shuo Xiao, 2018. "Physarum-inspired multi-parameter adaptive routing protocol for coal mine hybrid wireless mesh networks," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
- Tero, Atsushi & Kobayashi, Ryo & Nakagaki, Toshiyuki, 2006. "Physarum solver: A biologically inspired method of road-network navigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 115-119.
- Stamatios C Nicolis & Natalia Zabzina & Tanya Latty & David J T Sumpter, 2011. "Collective Irrationality and Positive Feedback," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-6, April.
- Shin Watanabe & Atsuko Takamatsu, 2014. "Transportation Network with Fluctuating Input/Output Designed by the Bio-Inspired Physarum Algorithm," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
- Julian M L Budd & Krisztina Kovács & Alex S Ferecskó & Péter Buzás & Ulf T Eysel & Zoltán F Kisvárday, 2010. "Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-25, March.
- Takatomo Mihana & Yuta Terashima & Makoto Naruse & Song-Ju Kim & Atsushi Uchida, 2018. "Memory Effect on Adaptive Decision Making with a Chaotic Semiconductor Laser," Complexity, Hindawi, vol. 2018, pages 1-8, April.
- Ohnishi, Teruaki & Okada, Osami & Shirakata, Hirofumi, 2013. "Morphological similarity of road networks and cracks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4127-4133.
More about this item
Keywords
Agent-based modelling (ABM); planning theory; self-organisation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:2:p:364-383. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.