IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i17p3634-3639.html
   My bibliography  Save this article

From Lotka to the entropy generation approach

Author

Listed:
  • Lucia, Umberto
  • Sciubba, Enrico

Abstract

The entropy approach to the evolution of open systems is analyzed, using Lotka’s principle as a starting point. A Lagrangian is sought after to develop an analytical method for the evaluation of the stationary states of open irreversible systems. The stationary conditions for open systems are first obtained on the basis of the entropy generation and its maximum principle, suggesting them as a link between the classical engineering thermodynamics approach and the more mathematical Lotka point of view.

Suggested Citation

  • Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3634-3639
    DOI: 10.1016/j.physa.2013.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113003385
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucia, Umberto, 2013. "Stationary open systems: A brief review on contemporary theories on irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1051-1062.
    2. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    3. Geoffrey P. Hammond & Adrian B. Winnett, 2009. "The Influence of Thermodynamic Ideas on Ecological Economics: An Interdisciplinary Critique," Sustainability, MDPI, vol. 1(4), pages 1-31, December.
    4. Lucia, Umberto, 2013. "Carnot efficiency: Why?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3513-3517.
    5. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    6. Sciubba, Enrico, 2011. "What did Lotka really say? A critical reassessment of the “maximum power principle”," Ecological Modelling, Elsevier, vol. 222(8), pages 1347-1353.
    7. Lucia, Umberto, 2012. "Irreversibility in biophysical and biochemical engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5997-6007.
    8. Lucia, Umberto, 2013. "Entropy and exergy in irreversible renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 559-564.
    9. Lucia, U., 2012. "Maximum or minimum entropy generation for open systems?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3392-3398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    2. Herrmann-Pillath, Carsten, 2015. "Energy, growth, and evolution: Towards a naturalistic ontology of economics," Ecological Economics, Elsevier, vol. 119(C), pages 432-442.
    3. Deng, Xinyang & Deng, Yong, 2014. "On the axiomatic requirement of range to measure uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 163-168.
    4. Attorre, F. & Sciubba, E. & Vitale, M., 2019. "A thermodynamic model for plant growth, validated with Pinus sylvestris data," Ecological Modelling, Elsevier, vol. 391(C), pages 53-62.
    5. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    6. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    7. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    8. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    9. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    10. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    11. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    12. Lucia, Umberto, 2013. "Exergy flows as bases of constructal law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6284-6287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    2. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    4. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.
    5. Lucia, Umberto & Simonetti, Marco & Chiesa, Giacomo & Grisolia, Giulia, 2017. "Ground-source pump system for heating and cooling: Review and thermodynamic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 867-874.
    6. Lucia, Umberto, 2014. "Entropy generation and the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 256-260.
    7. Lucia, Umberto & Grisolia, Giulia, 2017. "Unavailability percentage as energy planning and economic choice parameter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 197-204.
    8. Lucia, Umberto, 2014. "Entropy generation: Minimum inside and maximum outside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 61-65.
    9. Lucia, Umberto, 2013. "Exergy flows as bases of constructal law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6284-6287.
    10. Lucia, Umberto, 2014. "Transport processes in biological systems: Tumoral cells and human brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 327-336.
    11. Lucia, Umberto, 2013. "Thermodynamic paths and stochastic order in open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3912-3919.
    12. Lucia, Umberto, 2014. "Overview on fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 164-169.
    13. Lucia, Umberto, 2015. "Quanta and entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 115-121.
    14. Lucia, Umberto, 2014. "Thermodynamic approach to nano-properties of cell membrane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 185-191.
    15. Lucia, Umberto, 2016. "Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 121-128.
    16. Lucia, Umberto, 2013. "Thermodynamics and cancer stationary states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3648-3653.
    17. Lucia, Umberto, 2016. "Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 421-430.
    18. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    19. Lucia, Umberto, 2013. "Carnot efficiency: Why?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3513-3517.
    20. Sciubba, Enrico, 2011. "What did Lotka really say? A critical reassessment of the “maximum power principle”," Ecological Modelling, Elsevier, vol. 222(8), pages 1347-1353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3634-3639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.