IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i23p5997-6007.html
   My bibliography  Save this article

Irreversibility in biophysical and biochemical engineering

Author

Listed:
  • Lucia, Umberto

Abstract

The thermodynamic analysis of open systems is fundamental in engineering. For the open systems at their steady state, two apparently opposed principles for the rate of entropy production have been used: the minimum entropy production rate derived by Prigogine, used in the description of various processes in physics, chemistry and biology, and the maximum entropy production, used in many other cases and now considered more general. Both principles involve an extreme value of the rate of entropy production in an open system at the steady state under non-equilibrium conditions. In this paper, a link between these two approaches is developed and their synthesis with the constructal law is proposed. An application to ATP synthesis in anaerobic fermentation for biogas production is presented.

Suggested Citation

  • Lucia, Umberto, 2012. "Irreversibility in biophysical and biochemical engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5997-6007.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5997-6007
    DOI: 10.1016/j.physa.2012.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112006802
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Rafael U. Ibarra & Jeremy S. Edwards & Bernhard O. Palsson, 2002. "Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth," Nature, Nature, vol. 420(6912), pages 186-189, November.
    3. Prek, Matjaz, 2006. "Thermodynamical analysis of human thermal comfort," Energy, Elsevier, vol. 31(5), pages 732-743.
    4. Lucia, U., 2012. "Maximum or minimum entropy generation for open systems?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3392-3398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia, Umberto, 2014. "Thermodynamic approach to nano-properties of cell membrane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 185-191.
    2. Lucia, Umberto, 2013. "Thermodynamic paths and stochastic order in open systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 3912-3919.
    3. Lucia, Umberto, 2014. "Entropy generation and cell growth with comments for a thermodynamic anticancer approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 107-118.
    4. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    5. Lucia, Umberto, 2013. "Thermodynamics and cancer stationary states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3648-3653.
    6. Lucia, Umberto, 2014. "Transport processes in biological systems: Tumoral cells and human brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 327-336.
    7. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    8. Lucia, Umberto, 2014. "Entropy generation and the Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 256-260.
    9. Umberto Lucia, 2014. "The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)," Energies, MDPI, vol. 7(9), pages 1-23, September.
    10. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    11. Lucia, Umberto, 2014. "Entropy generation approach to cell systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Lucia & Giulia Grisolia, 2018. "Cyanobacteria and Microalgae : Thermoeconomic Considerations in Biofuel Production," Energies, MDPI, vol. 11(1), pages 1-16, January.
    2. Maino, Giuseppe & Lucia, Umberto, 2019. "A thermodynamic approach to the microclimate environment of museums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 66-72.
    3. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    4. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    5. Avraham E Mayo & Yaakov Setty & Seagull Shavit & Alon Zaslaver & Uri Alon, 2006. "Plasticity of the cis-Regulatory Input Function of a Gene," PLOS Biology, Public Library of Science, vol. 4(4), pages 1-1, March.
    6. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    7. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.
    8. Chatterjee, Atanu & Ban, Takahiko & Iannacchione, Germano, 2022. "Evidence of local equilibrium in a non-turbulent Rayleigh–Bénard convection at steady-state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    9. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    10. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    11. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    12. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    13. Yuksel Bayraktar & Esme Isik & Ibrahim Isik & Ayfer Ozyilmaz & Metin Toprak & Fatma Kahraman Guloglu & Serdar Aydin, 2022. "Analyzing of Alzheimer’s Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    14. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    15. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    16. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    17. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    18. Marcelo Rivas-Astroza & Raúl Conejeros, 2020. "Metabolic flux configuration determination using information entropy," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.
    19. Matthew A Hibbs & Chad L Myers & Curtis Huttenhower & David C Hess & Kai Li & Amy A Caudy & Olga G Troyanskaya, 2009. "Directing Experimental Biology: A Case Study in Mitochondrial Biogenesis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-12, March.
    20. Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5997-6007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.