IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v374y2007i1p457-470.html
   My bibliography  Save this article

Theory of rumour spreading in complex social networks

Author

Listed:
  • Nekovee, M.
  • Moreno, Y.
  • Bianconi, G.
  • Marsili, M.

Abstract

We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.

Suggested Citation

  • Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
  • Handle: RePEc:eee:phsmap:v:374:y:2007:i:1:p:457-470
    DOI: 10.1016/j.physa.2006.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106008090
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noymer, Andrew, 2001. "The Transmission and Persistence of`'Urban Legends': Sociological Application of Age-Structured Epidemic Models," Center for Culture, Organizations and Politics, Working Paper Series qt0rv3c82q, Center for Culture, Organizations and Politics of theInstitute for Research on Labor and Employment, UC Berkeley.
    2. Kosfeld, Michael, 2005. "Rumours and markets," Journal of Mathematical Economics, Elsevier, vol. 41(6), pages 646-664, September.
    3. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    2. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    4. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    5. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    6. Zhao, Laijun & Wang, Jiajia & Chen, Yucheng & Wang, Qin & Cheng, Jingjing & Cui, Hongxin, 2012. "SIHR rumor spreading model in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2444-2453.
    7. Zhao, Laijun & Wang, Xiaoli & Qiu, Xiaoyan & Wang, Jiajia, 2013. "A model for the spread of rumors in Barrat–Barthelemy–Vespignani (BBV) networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5542-5551.
    8. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model considering the proportion of wisemen in the crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1084-1094.
    9. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    10. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    11. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    12. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    13. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    14. Jinxian Li & Yanping Hu & Zhen Jin, 2019. "Rumor Spreading of an SIHR Model in Heterogeneous Networks Based on Probability Generating Function," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    15. Andrea Ellero & Annamaria Sorato & Giovanni Fasano, 2011. "A new model for estimating the probability of information spreading with opinion leaders," Working Papers 13, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    16. Merlone, U. & Radi, D., 2014. "Reaching consensus on rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 260-271.
    17. Huo, Liang-an & Huang, Peiqing & Fang, Xing, 2011. "An interplay model for authorities’ actions and rumor spreading in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3267-3274.
    18. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    19. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    20. Gardini, Laura & Merlone, Ugo & Tramontana, Fabio, 2011. "Inertia in binary choices: Continuity breaking and big-bang bifurcation points," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 153-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:374:y:2007:i:1:p:457-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.