IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p546-553.html
   My bibliography  Save this article

Modeling the exergy behavior of human body

Author

Listed:
  • Keutenedjian Mady, Carlos Eduardo
  • Silva Ferreira, Maurício
  • Itizo Yanagihara, Jurandir
  • Hilário Nascimento Saldiva, Paulo
  • de Oliveira Junior, Silvio

Abstract

Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures.

Suggested Citation

  • Keutenedjian Mady, Carlos Eduardo & Silva Ferreira, Maurício & Itizo Yanagihara, Jurandir & Hilário Nascimento Saldiva, Paulo & de Oliveira Junior, Silvio, 2012. "Modeling the exergy behavior of human body," Energy, Elsevier, vol. 45(1), pages 546-553.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:546-553
    DOI: 10.1016/j.energy.2012.02.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prek, Matjaz, 2006. "Thermodynamical analysis of human thermal comfort," Energy, Elsevier, vol. 31(5), pages 732-743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genc, S. & Sorguven, E. & Ozilgen, M. & Aksan Kurnaz, I., 2013. "Unsteady exergy destruction of the neuron under dynamic stress conditions," Energy, Elsevier, vol. 59(C), pages 422-431.
    2. Mateja Dovjak & Masanori Shukuya & Aleš Krainer, 2018. "User-Centred Healing-Oriented Conditions in the Design of Hospital Environments," IJERPH, MDPI, vol. 15(10), pages 1-28, September.
    3. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    4. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    5. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    6. Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.
    7. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2017. "Assessment of thermal comfort conditions during physical exercise by means of exergy analysis," Energy, Elsevier, vol. 128(C), pages 609-617.
    8. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    9. Prek, Matjaž & Butala, Vincenc, 2017. "Comparison between Fanger's thermal comfort model and human exergy loss," Energy, Elsevier, vol. 138(C), pages 228-237.
    10. Guo, Hongshan & Aviv, Dorit & Loyola, Mauricio & Teitelbaum, Eric & Houchois, Nicholas & Meggers, Forrest, 2020. "On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    11. Deshko, Valerii & Buyak, Nadia & Bilous, Inna & Voloshchuk, Volodymyr, 2020. "Reference state and exergy based dynamics analysis of energy performance of the “heat source - human - building envelope” system," Energy, Elsevier, vol. 200(C).
    12. Mady, Carlos Eduardo Keutenedjian & Albuquerque, Cyro & Fernandes, Tiago Lazzaretti & Hernandez, Arnaldo José & Saldiva, Paulo Hilário Nascimento & Yanagihara, Jurandir Itizo & de Oliveira, Silvio, 2013. "Exergy performance of human body under physical activities," Energy, Elsevier, vol. 62(C), pages 370-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    2. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    3. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    4. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    5. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2017. "Assessment of thermal comfort conditions during physical exercise by means of exergy analysis," Energy, Elsevier, vol. 128(C), pages 609-617.
    6. Homod, Raad Z., 2014. "Assessment regarding energy saving and decoupling for different AHU (air handling unit) and control strategies in the hot-humid climatic region of Iraq," Energy, Elsevier, vol. 74(C), pages 762-774.
    7. Prek, Matjaž & Butala, Vincenc, 2017. "Comparison between Fanger's thermal comfort model and human exergy loss," Energy, Elsevier, vol. 138(C), pages 228-237.
    8. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    9. Maino, Giuseppe & Lucia, Umberto, 2019. "A thermodynamic approach to the microclimate environment of museums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 66-72.
    10. Lucia, Umberto, 2012. "Irreversibility in biophysical and biochemical engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5997-6007.
    11. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
    12. Diana Enescu, 2019. "Models and Indicators to Assess Thermal Sensation Under Steady-State and Transient Conditions," Energies, MDPI, vol. 12(5), pages 1-43, March.
    13. Šebela, Stanka & Turk, Janez, 2014. "Natural and anthropogenic influences on the year-round temperature dynamics of air and water in Postojna show cave, Slovenia," Tourism Management, Elsevier, vol. 40(C), pages 233-243.
    14. Mady, Carlos Eduardo Keutenedjian & Albuquerque, Cyro & Fernandes, Tiago Lazzaretti & Hernandez, Arnaldo José & Saldiva, Paulo Hilário Nascimento & Yanagihara, Jurandir Itizo & de Oliveira, Silvio, 2013. "Exergy performance of human body under physical activities," Energy, Elsevier, vol. 62(C), pages 370-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:546-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.