IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v24y2024i3d10.1007_s11067-024-09626-2.html
   My bibliography  Save this article

Revealing the Community Structure of Urban Bus Networks: a Multi-view Graph Learning Approach

Author

Listed:
  • Shuaiming Chen

    (Chang’an University)

  • Ximing Ji

    (Chang’an University)

  • Haipeng Shao

    (Chang’an University)

Abstract

Despite great progress in enhancing the efficiency of public transport, one still cannot seamlessly incorporate structural characteristics into existing algorithms. Moreover, comprehensively exploring the structure of urban bus networks through a single-view modelling approach is limited. In this research, a multi-view graph learning algorithm (MvGL) is proposed to aggregate community information from multiple views of urban bus system. First, by developing a single-view graph encoder module, latent community relationships can be captured during learning node embeddings. Second, inspired by attention mechanism, a multi-view graph encoder module is designed to fuse node embeddings in different views, aims to perceive more community information of urban bus network comprehensively. Then, the community assignment can be updated by using a differentiable clustering layer. Finally, a well-defined objective function, which integrates node level, community level and graph level, can help improve the quality of community detection. Experimental results demonstrated that MvGL can effectively aggregate community information from different views and further improve the quality of community detection. This research contributes to the understanding the structural characteristics of public transport networks and facilitates their operational efficiency.

Suggested Citation

  • Shuaiming Chen & Ximing Ji & Haipeng Shao, 2024. "Revealing the Community Structure of Urban Bus Networks: a Multi-view Graph Learning Approach," Networks and Spatial Economics, Springer, vol. 24(3), pages 589-619, September.
  • Handle: RePEc:kap:netspa:v:24:y:2024:i:3:d:10.1007_s11067-024-09626-2
    DOI: 10.1007/s11067-024-09626-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-024-09626-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-024-09626-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pei-Pei & Kan Chen, & He, Yue & Zhou, Tao & Su, Bei-Bei & Jin, Yingdi & Chang, Hui & Zhou, Yue-Ping & Sun, Li-Cheng & Wang, Bing-Hong & He, Da-Ren, 2006. "Model and empirical study on some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 599-616.
    2. William McGill, 1954. "Multivariate information transmission," Psychometrika, Springer;The Psychometric Society, vol. 19(2), pages 97-116, June.
    3. Chang, Hui & Su, Bei-Bei & Zhou, Yue-Ping & He, Da-Ren, 2007. "Assortativity and act degree distribution of some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 687-702.
    4. Akbarzadeh, Meisam & Salehi Reihani, Sayed Farzin & Samani, Keivan Aghababaei, 2019. "Detecting critical links of urban networks using cluster detection methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 288-298.
    5. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    6. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    7. Jun Li & Peiqing Zheng & Wenna Zhang, 2020. "Identifying the spatial distribution of public transportation trips by node and community characteristics," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(3), pages 325-340, April.
    8. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    9. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Sun, Yeran & Mburu, Lucy & Wang, Shaohua, 2016. "Analysis of community properties and node properties to understand the structure of the bus transport network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 523-530.
    11. Xu, Xinping & Hu, Junhui & Liu, Feng & Liu, Lianshou, 2007. "Scaling and correlations in three bus-transport networks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 441-448.
    12. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    13. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    14. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    15. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    16. Carlo Ratti & Stanislav Sobolevsky & Francesco Calabrese & Clio Andris & Jonathan Reades & Mauro Martino & Rob Claxton & Steven H Strogatz, 2010. "Redrawing the Map of Great Britain from a Network of Human Interactions," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    17. Xin, Xin & Wang, Chaokun & Ying, Xiang & Wang, Boyang, 2017. "Deep community detection in topologically incomplete networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 342-352.
    18. Jin, Hui & Liu, Yue & Wu, Telan & Zhang, Yanpei, 2022. "Site-specific optimization of bus stop locations and designs over a corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    19. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    20. Seyed Arman Haghbayan & Nikolas Geroliminis & Meisam Akbarzadeh, 2021. "Community detection in large scale congested urban road networks," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    21. Li, Jin-Yang & Teng, Jing & Wang, Hui, 2023. "Integrating bipartite network modelling and overlapping community detection: A new method to evaluate transit line coordination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Luo, Ding & Cats, Oded & van Lint, Hans & Currie, Graham, 2019. "Integrating network science and public transport accessibility analysis for comparative assessment," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Hu, Baoyu & Feng, Shumin & Nie, Cen, 2017. "Bus transport network of Shenyang considering competitive and cooperative relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 259-268.
    4. Li, Jin-Yang & Teng, Jing & Wang, Hui, 2023. "Integrating bipartite network modelling and overlapping community detection: A new method to evaluate transit line coordination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    5. Psaltoglou, Artemis & Calle, Eusebi, 2018. "Enhanced connectivity index – A new measure for identifying critical points in urban public transportation networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 22-32.
    6. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
    7. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    8. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    9. Hu, Xinlei & Huang, Jie & Shi, Feng, 2022. "A robustness assessment with passenger flow data of high-speed rail network in China," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.
    11. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Wang, Ziqi & Pei, Yulong & Zhang, Jianhua & Dong, Chuntong & Liu, Jing & Zhou, Dongyue, 2024. "Vulnerability analysis of public transit systems from the perspective of the traffic situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    14. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    15. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    16. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    17. Moreno-Pulido, Soledad & Pavón-Domínguez, Pablo & Burgos-Pintos, Pedro, 2021. "Temporal evolution of multifractality in the Madrid Metro subway network," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    19. Feng, Shumin & Hu, Baoyu & Nie, Cen & Shen, Xianghao, 2016. "Empirical study on a directed and weighted bus transport network in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 85-92.
    20. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:24:y:2024:i:3:d:10.1007_s11067-024-09626-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.