IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics0378437121006282.html
   My bibliography  Save this article

Robust point control for a class of fractional-order reaction–diffusion systems via non-collocated point measurement

Author

Listed:
  • Zhao, Ailiang
  • Li, Junmin
  • Lei, Yanfang
  • He, Chao

Abstract

In this paper, stabilization problem of a class of anomalous reaction diffusion systems described by fractional-order reaction–diffusion equations (FRDEs) is studied via robust point control using non-collocated point measurement. To get over the difficulty created by non-collocated point measurement, an Luenberger-type FPDE state observer is established firstly. And then, observer-based output feedback controllers are designed for three cases: the number of controllers is less than and great than or equals to that of the observers’. By utilizing Lyapunov direct method, sufficient conditions of Mittag-Leffler (M-L) stability for FRDEs are derived in the form of linear matrix inequalities (LMIs), and the robustness analysis of the controllers to the reaction coefficient and diffusion coefficient of the system is given. Finally, numerical simulation shows the feasibility and validity of the proposed control method.

Suggested Citation

  • Zhao, Ailiang & Li, Junmin & Lei, Yanfang & He, Chao, 2021. "Robust point control for a class of fractional-order reaction–diffusion systems via non-collocated point measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006282
    DOI: 10.1016/j.physa.2021.126355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121006282
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    2. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    3. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    4. Song, Wanqing & Li, Ming & Li, Yuanyuan & Cattani, Carlo & Chi, Chi-Hung, 2019. "Fractional Brownian motion: Difference iterative forecasting models," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 347-355.
    5. Fendzi-Donfack, Emmanuel & Kenfack-Jiotsa, Aurélien, 2023. "Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents — LC blocks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    6. Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Yue Qi & Yue Wang, 2023. "Innovating and Pricing Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal Brownian Motions," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    8. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.
    9. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    10. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.