IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v388y2009i13p2705-2716.html
   My bibliography  Save this article

Continuum modeling of cooperative traffic flow dynamics

Author

Listed:
  • Ngoduy, D.
  • Hoogendoorn, S.P.
  • Liu, R.

Abstract

This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

Suggested Citation

  • Ngoduy, D. & Hoogendoorn, S.P. & Liu, R., 2009. "Continuum modeling of cooperative traffic flow dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2705-2716.
  • Handle: RePEc:eee:phsmap:v:388:y:2009:i:13:p:2705-2716
    DOI: 10.1016/j.physa.2009.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109001605
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Wagner, Christoph, 1998. "Asymptotic solutions for a multi-anticipative car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 260(1), pages 218-224.
    3. Ge, H.X. & Dai, S.Q. & Dong, L.Y., 2006. "An extended car-following model based on intelligent transportation system application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 543-548.
    4. Wong, G. C. K. & Wong, S. C., 2002. "A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 827-841, November.
    5. Schönhof, Martin & Kesting, Arne & Treiber, Martin & Helbing, Dirk, 2006. "Coupled vehicle and information flows: Message transport on a dynamic vehicle network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 73-81.
    6. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    7. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    8. Tang, T.Q. & Huang, H.J. & Xu, G., 2008. "A new macro model with consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6845-6856.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chen & Chen, Jianqiao & Guo, Xiwei, 2010. "Influences of overtaking on two-lane traffic with signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 141-148.
    2. Puylaert, S. & Snelder, M. & van Nes, R. & van Arem, B., 2018. "Mobility impacts of early forms of automated driving – A system dynamic approach," Transport Policy, Elsevier, vol. 72(C), pages 171-179.
    3. Zhao, Jing & Li, Peng, 2017. "An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 178-187.
    4. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    2. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    3. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    4. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Tie-Qiao Tang & Yun-Peng Wang & Xiao-Bao Yang & Hai-Jun Huang, 2014. "A Multilane Traffic Flow Model Accounting for Lane Width, Lane-Changing and the Number of Lanes," Networks and Spatial Economics, Springer, vol. 14(3), pages 465-483, December.
    6. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    7. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    8. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Qiao, Dian-Liang & Zhang, Peng & Lin, Zhi-Yang & Wong, S.C. & Choi, Keechoo, 2017. "A Runge–Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 309-319.
    10. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    11. Ngoduy, D., 2008. "Applicable filtering framework for online multiclass freeway network estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 599-616.
    12. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    13. Redhu, Poonam & Gupta, Arvind Kumar, 2015. "Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 249-260.
    14. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    15. Jiang, Rui & Wu, Qing-Song, 2003. "Study on propagation speed of small disturbance from a car-following approach," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 85-99, January.
    16. Zhang, Peng & Wong, S.C. & Dai, S.Q., 2009. "A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 562-574, June.
    17. Fan, Hongqiang & Jia, Bin & Tian, Junfang & Yun, Lifen, 2014. "Characteristics of traffic flow at a non-signalized intersection in the framework of game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 172-180.
    18. Ren, Weilin & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    19. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    20. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:388:y:2009:i:13:p:2705-2716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.