IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v292y2017icp309-319.html
   My bibliography  Save this article

A Runge–Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes

Author

Listed:
  • Qiao, Dian-Liang
  • Zhang, Peng
  • Lin, Zhi-Yang
  • Wong, S.C.
  • Choi, Keechoo

Abstract

The paper proposes a scheme by combining the Runge–Kutta discontinuous Galerkin method with a δ-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasticity in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the scheme’s efficiency in resolving complex waves of the two systems. Moreover, the discussion implies that the so-called δ-mapping algorithm can also be combined with any other classical methods for solving similar problems in general.

Suggested Citation

  • Qiao, Dian-Liang & Zhang, Peng & Lin, Zhi-Yang & Wong, S.C. & Choi, Keechoo, 2017. "A Runge–Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 309-319.
  • Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:309-319
    DOI: 10.1016/j.amc.2016.07.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316304684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.07.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lebacque, Jean-Patrick & Mammar, Salim & Haj-Salem, Habib, 2007. "The Aw-Rascle and Zhang's model: Vacuum problems, existence and regularity of the solutions of the Riemann problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 710-721, August.
    2. Wong, G. C. K. & Wong, S. C., 2002. "A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 827-841, November.
    3. Tang, T.Q. & Huang, H.J. & Xu, G., 2008. "A new macro model with consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6845-6856.
    4. Jin, W. L. & Zhang, H. M., 2003. "On the distribution schemes for determining flows through a merge," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 521-540, July.
    5. W.L. Jin & L. Chen & Elbridge Gerry Puckett, 2009. "Supply-demand Diagrams and a New Framework for Analyzing the Inhomogeneous Lighthill-Whitham-Richards Model," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 603-635, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Xiang & Guodong Wang & Suping Zhang, 2021. "High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space," Mathematics, MDPI, vol. 9(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    2. Ngoduy, D. & Hoogendoorn, S.P. & Liu, R., 2009. "Continuum modeling of cooperative traffic flow dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2705-2716.
    3. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    4. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    5. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    6. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    7. Wang, Jiawen & Zou, Linzhi & Zhao, Jing & Wang, Xinwei, 2024. "Dynamic capacity drop propagation in incident-affected networks: Traffic state modeling with SIS-CTM," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Zhang, Peng & Wong, S.C. & Dai, S.Q., 2009. "A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 562-574, June.
    9. Tie-Qiao Tang & Yun-Peng Wang & Xiao-Bao Yang & Hai-Jun Huang, 2014. "A Multilane Traffic Flow Model Accounting for Lane Width, Lane-Changing and the Number of Lanes," Networks and Spatial Economics, Springer, vol. 14(3), pages 465-483, December.
    10. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    11. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    12. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    13. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    14. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    15. Pereira, Mike & Boyraz Baykas, Pinar & Kulcsár, Balázs & Lang, Annika, 2022. "Parameter and density estimation from real-world traffic data: A kinetic compartmental approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 210-239.
    16. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    17. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    18. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    19. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    20. Jin, Wen-Long & Zhang, H. Michael, 2013. "An instantaneous kinematic wave theory of diverging traffic," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:309-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.