IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i15p3847-3851.html
   My bibliography  Save this article

Double power laws in income and wealth distributions

Author

Listed:
  • Coelho, Ricardo
  • Richmond, Peter
  • Barry, Joseph
  • Hutzler, Stefan

Abstract

Close examination of wealth distributions reveal the existence of two distinct power law regimes. The Pareto exponents of the super-rich, identified, for example in rich lists such as provided by Forbes, are smaller than the Pareto exponents obtained for top earners in income data sets. Our extension of the Slanina model of wealth is able to reproduce these double power law features.

Suggested Citation

  • Coelho, Ricardo & Richmond, Peter & Barry, Joseph & Hutzler, Stefan, 2008. "Double power laws in income and wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3847-3851.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:15:p:3847-3851
    DOI: 10.1016/j.physa.2008.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108000794
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinha, Sitabhra, 2006. "Evidence for power-law tail of the wealth distribution in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 555-562.
    2. Ofer Malcai & Ofer Biham & Peter Richmond & Sorin Solomon, 2002. "Theoretical Analysis and Simulations of the Generalized Lotka-Volterra Model," Papers cond-mat/0208514, arXiv.org.
    3. Clementi, F. & Gallegati, M., 2005. "Power law tails in the Italian personal income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 427-438.
    4. Coelho, Ricardo & Néda, Zoltán & Ramasco, José J. & Augusta Santos, Maria, 2005. "A family-network model for wealth distribution in societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 515-528.
    5. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    6. Repetowicz, Przemysław & Hutzler, Stefan & Richmond, Peter, 2005. "Dynamics of money and income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 641-654.
    7. Richmond, Peter & Repetowicz, Przemek & Hutzler, Stefan & Coelho, Ricardo, 2006. "Comments on recent studies of the dynamics and distribution of money," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 43-48.
    8. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    9. Peter Richmond & Sorin Solomon, 2001. "Power Laws Are Disguised Boltzmann Laws," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 333-343.
    10. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    11. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    12. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamannossi degl’Innocenti, Duccio & Rablen, Matthew D., 2020. "Tax evasion on a social network," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 79-91.
    2. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Chami Figueira, F. & Moura, N.J. & Ribeiro, M.B., 2011. "The Gompertz–Pareto income distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 689-698.
    4. Kočišová, J. & Horváth, D. & Brutovský, B., 2009. "The efficiency of individual optimization in the conditions of competitive growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3585-3592.
    5. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    6. Blair Fix, 2018. "Hierarchy and the power-law income distribution tail," Journal of Computational Social Science, Springer, vol. 1(2), pages 471-491, September.
    7. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    8. Fix, Blair, 2021. "Redistributing Income Through Hierarchy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue 98, pages 58-86.
    9. C. García & J. García Pérez & J. Dorp, 2011. "Modeling heavy-tailed, skewed and peaked uncertainty phenomena with bounded support," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(4), pages 463-486, November.
    10. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    11. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    12. Soares, Abner D. & Moura Jr., Newton J. & Ribeiro, Marcelo B., 2016. "Tsallis statistics in the income distribution of Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 158-171.
    13. Mannan, Kazi Abdul & Farhana, Khandaker Mursheda & Chowdhury, G. M. Omar Faruque, 2021. "Social Network and Tax Evasion: Theoretical Model and Empirical Evidence in Bangladesh," MPRA Paper 108279, University Library of Munich, Germany, revised 2021.
    14. Düring, Bertram & Toscani, Giuseppe, 2008. "International and domestic trading and wealth distribution," CoFE Discussion Papers 08/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Boris M. Dolgonosov, 2018. "A Conceptual Model of the Relationship Among World Economy and Climate Indicators," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-15, March.
    16. Paul Peeters & Martin Landré, 2011. "The Emerging Global Tourism Geography—An Environmental Sustainability Perspective," Sustainability, MDPI, vol. 4(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    2. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    3. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    4. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    5. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    6. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    7. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    8. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    9. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    10. Vallejos, Adams & Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2019. "A new κ-deformed parametric model for the size distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 819-829.
    11. Juan Pablo Pinasco & Mauro Rodríguez Cartabia & Nicolas Saintier, 2018. "A Game Theoretic Model of Wealth Distribution," Dynamic Games and Applications, Springer, vol. 8(4), pages 874-890, December.
    12. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    13. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    14. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    15. Sitabhra Sinha, 2005. "The Rich Are Different!: Pareto Law from asymmetric interactions in asset exchange models," Papers physics/0504197, arXiv.org.
    16. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    17. Ausloos, Marcel & Pe¸kalski, Andrzej, 2007. "Model of wealth and goods dynamics in a closed market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 560-568.
    18. Anindya S. Chakrabarti, 2011. "An almost linear stochastic map related to the particle system models of social sciences," Papers 1101.3617, arXiv.org, revised Mar 2011.
    19. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    20. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:15:p:3847-3851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.