IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v353y2005icp515-528.html
   My bibliography  Save this article

A family-network model for wealth distribution in societies

Author

Listed:
  • Coelho, Ricardo
  • Néda, Zoltán
  • Ramasco, José J.
  • Augusta Santos, Maria

Abstract

A model based on first-degree family relations network is used to describe the wealth distribution in societies. The network structure is not a priori introduced in the model, it is generated in parallel with the wealth values through simple and realistic dynamical rules. The model has two main parameters, governing the wealth exchange in the network. Choosing their values realistically, leads to wealth distributions in good agreement with measured data. The cumulative wealth distribution function has an exponential behavior in the low and medium wealth limit, and shows the Pareto-like power-law tail for the upper 5% of the society. The obtained Pareto indexes are in good agreement with the measured ones. The generated family networks also converge to a statistically stable topology with a simple Poissonian degree distribution. On this family network many interesting correlations are studied, and the main factors leading to wealth diversification and the formation of the Pareto law are identified.

Suggested Citation

  • Coelho, Ricardo & Néda, Zoltán & Ramasco, José J. & Augusta Santos, Maria, 2005. "A family-network model for wealth distribution in societies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 515-528.
  • Handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:515-528
    DOI: 10.1016/j.physa.2005.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710500066X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    2. Fujiwara, Yoshi & Di Guilmi, Corrado & Aoyama, Hideaki & Gallegati, Mauro & Souma, Wataru, 2004. "Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 197-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Istvan Gere & Szabolcs Kelemen & Geza Toth & Tamas Biro & Zoltan Neda, 2021. "Wealth distribution in modern societies: collected data and a master equation approach," Papers 2104.04134, arXiv.org.
    2. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    3. Coelho, Ricardo & Richmond, Peter & Barry, Joseph & Hutzler, Stefan, 2008. "Double power laws in income and wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3847-3851.
    4. Brzezinski, Michal, 2014. "Do wealth distributions follow power laws? Evidence from ‘rich lists’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 155-162.
    5. Stefan, F.M. & Atman, A.P.F., 2023. "Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Tomson Ogwang, 2011. "Power laws in top wealth distributions: evidence from Canada," Empirical Economics, Springer, vol. 41(2), pages 473-486, October.
    7. Gere, István & Kelemen, Szabolcs & Tóth, Géza & Biró, Tamás S. & Néda, Zoltán, 2021. "Wealth distribution in modern societies: Collected data and a master equation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    8. Ignacio González García & Alfonso Mateos Caballero, 2021. "Models of Wealth and Inequality Using Fiscal Microdata: Distribution in Spain from 2015 to 2020," Mathematics, MDPI, vol. 9(4), pages 1-24, February.
    9. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.
    10. Jan Schulz & Mishael Milaković, 2023. "How Wealthy are the Rich?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(1), pages 100-123, March.
    11. Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    13. Zoltan Neda & Istvan Gere & Tamas S. Biro & Geza Toth & Noemi Derzsy, 2019. "Scaling in Income Inequalities and its Dynamical Origin," Papers 1911.02449, arXiv.org, revised Mar 2020.
    14. Kerim Eser Afc{s}ar & Mehmet Ozyi~git & Yusuf Yuksel & Umit Ak{i}nc{i}, 2021. "Testing the Goodwin Growth Cycles with Econophysics Approach in 2002-2019 Period in Turkey," Papers 2106.02546, arXiv.org.
    15. Néda, Zoltán & Gere, István & Biró, Tamás S. & Tóth, Géza & Derzsy, Noemi, 2020. "Scaling in income inequalities and its dynamical origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petra Štamfestová & Lukáš Sobíšek & Jiří Hnilica, 2023. "Firm Size Distribution in the Central European Context," Central European Business Review, Prague University of Economics and Business, vol. 2023(5), pages 151-175.
    2. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    3. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    4. Bezsudnov, I.V. & Snarskii, A.A., 2014. "From the time series to the complex networks: The parametric natural visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 53-60.
    5. Segarra, Agustí & Teruel, Mercedes, 2012. "An appraisal of firm size distribution: Does sample size matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 314-328.
    6. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    7. Lyócsa, Štefan & Výrost, Tomáš, 2018. "Scale-free distribution of firm-size distribution in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 501-505.
    8. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    9. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    10. F. W. S. Lima, 2015. "Evolution of egoism on semi-directed and undirected Barabási-Albert networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-9.
    11. G. Ghoshal & M. E.J. Newman, 2007. "Growing distributed networks with arbitrary degree distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 175-184, July.
    12. Chang, Y.F. & Han, S.K. & Wang, X.D., 2018. "The way to uncover community structure with core and diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 111-119.
    13. Chakrabarti, Anindya S., 2015. "Stochastic Lotka-Volterra equations: A model of lagged diffusion of technology in an interconnected world," IIMA Working Papers WP2015-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    15. Keiichi Kishi, 2016. "Technology Diffusion, Pareto Distribution, and Patent Policy," Discussion Papers in Economics and Business 16-31, Osaka University, Graduate School of Economics.
    16. Musa, Hussam & Krištofík, Peter & Medzihorský, Juraj & Klieštik, Tomáš, 2024. "The development of firm size distribution – Evidence from four Central European countries," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 98-110.
    17. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    18. L. da F. Costa & L. E.C. da Rocha, 2006. "A generalized approach to complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 237-242, March.
    19. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    20. Florian Blöchl & Fabian J. Theis & Fernando Vega-Redondo & Eric O'N. Fisher, 2010. "Which Sectors of a Modern Economy are most Central?," CESifo Working Paper Series 3175, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:515-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.