IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.06929.html
   My bibliography  Save this paper

A new $\kappa$-deformed parametric model for the size distribution of wealth

Author

Listed:
  • Adams Vallejos
  • Ignacio Ormazabal
  • Felix A. Borotto
  • Hernan F. Astudillo

Abstract

It has been pointed out by Patriarca et al. (2005) that the power-law tailed equilibrium distribution in heterogeneous kinetic exchange models with a distributed saving parameter can be resolved as a mixture of Gamma distributions corresponding to particular subsets of agents. Here, we propose a new four-parameter statistical distribution which is a $\kappa$-deformation of the Generalized Gamma distribution with a power-law tail, based on the deformed exponential and logarithm functions introduced by Kaniadakis(2001). We found that this new distribution is also an extension to the $\kappa$-Generalized distribution proposed by Clementi et al. (2007), with an additional shape parameter $\nu$, and properly reproduces the whole range of the distribution of wealth in such heterogeneous kinetic exchange models. We also provide various associated statistical measures and inequality measures.

Suggested Citation

  • Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
  • Handle: RePEc:arx:papers:1805.06929
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.06929
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Repetowicz, Przemysław & Hutzler, Stefan & Richmond, Peter, 2005. "Dynamics of money and income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 641-654.
    2. Cowell, Frank A. & Kuga, Kiyoshi, 1981. "Additivity and the entropy concept: An axiomatic approach to inequality measurement," Journal of Economic Theory, Elsevier, vol. 25(1), pages 131-143, August.
    3. Shorrocks, A F, 1980. "The Class of Additively Decomposable Inequality Measures," Econometrica, Econometric Society, vol. 48(3), pages 613-625, April.
    4. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    5. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    6. Arnold, Barry C. & Villaseñor, Jose A., 1986. "Lorenz ordering of means and medians," Statistics & Probability Letters, Elsevier, vol. 4(1), pages 47-49, January.
    7. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    8. Frank A. Cowell, 1980. "On the Structure of Additive Inequality Measures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(3), pages 521-531.
    9. Marco Patriarca & Anirban Chakraborti & Kimmo Kaski & Guido Germano, 2005. "Kinetic theory models for the distribution of wealth: power law from overlap of exponentials," Papers physics/0504153, arXiv.org, revised May 2005.
    10. Drăgulescu, Adrian & Yakovenko, Victor M., 2001. "Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 213-221.
    11. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    12. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    13. Corrado Gini, 2005. "On the measurement of concentration and variability of characters," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 1-38.
    14. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    15. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    16. Cowell, Frank A., 1980. "Generalized entropy and the measurement of distributional change," European Economic Review, Elsevier, vol. 13(1), pages 147-159, January.
    17. Kaniadakis, G., 2001. "Non-linear kinetics underlying generalized statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(3), pages 405-425.
    18. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    19. A. Drăgulescu & V.M. Yakovenko, 2001. "Evidence for the exponential distribution of income in the USA," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 585-589, April.
    20. Anirban Chakraborti & Marco Patriarca, 2008. "Gamma-distribution and wealth inequality," Papers 0802.4410, arXiv.org.
    21. Arnab Chatterjee & Bikas K. Chakrabarti & Robin B. Stinchcombe, 2005. "Master equation for a kinetic model of trading market and its analytic solution," Papers cond-mat/0501413, arXiv.org, revised Aug 2005.
    22. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    23. Anirban Chakraborti, 2002. "Distributions Of Money In Model Markets Of Economy," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(10), pages 1315-1321.
    24. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Money in Gas-Like Markets: Gibbs and Pareto Laws," Papers cond-mat/0311227, arXiv.org.
    25. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallejos, Adams & Ormazábal, Ignacio & Borotto, Félix A. & Astudillo, Hernán F., 2019. "A new κ-deformed parametric model for the size distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 819-829.
    2. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    3. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    4. Chakrabarti, Anindya S. & Chakrabarti, Bikas K., 2010. "Statistical theories of income and wealth distribution," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-31.
    5. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    6. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2012. "A new model of income distribution: the κ-generalized distribution," Journal of Economics, Springer, vol. 105(1), pages 63-91, January.
    8. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    9. Angle, John, 2006. "The Inequality Process as a wealth maximizing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 388-414.
    10. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    11. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    12. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    13. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    14. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    16. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    17. N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.
    18. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    19. Juan Pablo Pinasco & Mauro Rodríguez Cartabia & Nicolas Saintier, 2018. "A Game Theoretic Model of Wealth Distribution," Dynamic Games and Applications, Springer, vol. 8(4), pages 874-890, December.
    20. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.06929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.