IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i2p631-636.html
   My bibliography  Save this article

Stochastic analysis of an agent-based model

Author

Listed:
  • Veglio, A.
  • Marsili, M.

Abstract

We analyze the dynamics of a forecasting game that exhibits the phenomenon of information cascades. Each agent aims at correctly predicting a binary variable and he/she can either look for independent information or herd on the choice of others. We show that dynamics can be analytically described in terms of a Langevin equation and its collective behavior is described by the solution of a Kramers’ problem. This provides very accurate results in the region where the vast majority of agents herd, that corresponds to the most interesting one from a game theoretic point of view.

Suggested Citation

  • Veglio, A. & Marsili, M., 2007. "Stochastic analysis of an agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 631-636.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:631-636
    DOI: 10.1016/j.physa.2007.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710700800X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Guedj & Jean-Philippe Bouchaud, 2004. "Experts' earning forecasts: bias, herding and gossamer information," Science & Finance (CFM) working paper archive 500062, Science & Finance, Capital Fund Management.
    2. Philippe Curty & Matteo Marsili, 2005. "Phase coexistence in a forecasting game," Papers physics/0506151, arXiv.org, revised Feb 2006.
    3. Olivier Guedj & Jean-Philippe Bouchaud, 2004. "Experts' earning forecasts: bias, herding and gossamer information," Papers cond-mat/0410079, arXiv.org.
    4. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    5. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    6. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    2. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    3. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    4. Li Lin & Didier Sornette, 2015. ""Speculative Influence Network" during financial bubbles: application to Chinese Stock Markets," Papers 1510.08162, arXiv.org.
    5. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    6. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    7. IKEDA Yuichi & YOSHIKAWA Hiroshi, 2018. "Macroprudential Modeling Based on Spin Dynamics in a Supply Chain Network," Discussion papers 18045, Research Institute of Economy, Trade and Industry (RIETI).
    8. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    9. Bargigli, Leonardo & Tedeschi, Gabriele, 2014. "Interaction in agent-based economics: A survey on the network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 1-15.
    10. Christian Borghesi & Jean-Philippe Bouchaud, 2007. "Of songs and men: a model for multiple choice with herding," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 557-568, August.
    11. Kurz, Claudia & Kurz-Kim, Jeong-Ryeol, 2013. "What determines the dynamics of absolute excess returns on stock markets?," Economics Letters, Elsevier, vol. 118(2), pages 342-346.
    12. Li Lin & Didier Sornette, 2018. "“Speculative Influence Network” during financial bubbles: application to Chinese stock markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 385-431, July.
    13. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    14. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    15. Ferdinand Thies & Sören Wallbach & Michael Wessel & Markus Besler & Alexander Benlian, 2022. "Initial coin offerings and the cryptocurrency hype - the moderating role of exogenous and endogenous signals," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1691-1705, September.
    16. Ruomeng Cui & Dennis J. Zhang & Achal Bassamboo, 2019. "Learning from Inventory Availability Information: Evidence from Field Experiments on Amazon," Management Science, INFORMS, vol. 65(3), pages 1216-1235, March.
    17. Stéphan Marette, 2017. "Jill E. Hobbs, Stavroula Malla, Eric K. Sogah and May T. Yeung, 2014, Regulating Health Foods. Policy Challenges and Consumer Conundrums," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(1), pages 93-94, July.
    18. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    19. Cao, Melanie & Shi, Shouyong, 2006. "Signaling in the Internet craze of initial public offerings," Journal of Corporate Finance, Elsevier, vol. 12(4), pages 818-833, September.
    20. Ben Klemens, 2013. "A Peer-based Model of Fat-tailed Outcomes," Papers 1304.0718, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:631-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.