IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/18045.html
   My bibliography  Save this paper

Macroprudential Modeling Based on Spin Dynamics in a Supply Chain Network

Author

Listed:
  • IKEDA Yuichi
  • YOSHIKAWA Hiroshi

Abstract

The economic crisis of 2008 showed that conventional microprudential policy to ensure the soundness of individual banks was not sufficient, and prudential regulations to cover the whole financial sector were desired. Such regulations attract increasing attention, and policy related to those regulations is called macroprudential policy, which aims to reduce systemic risk in the whole financial sector by regulating the relationship between the financial sector and the real economy. In this paper, using a spin network model, we study channels of distress propagation from the financial sector to the real economy through the supply chain network in Japan from 1980 to 2015 and discuss good indicators for macroprudential policy. First, an estimation of the exogenous shocks acting on the communities of real economy in the supply chain network provides us evidence of the channels of distress propagation from the financial sector to the real economy through the supply chain network. Furthermore, causal networks between exogenous shocks and macroeconomic variables clarified the characteristics of the lead–lag relationship between exogenous shocks and macroeconomic variables as the bubble burst. In summary, monitoring temporal changes of exogenous shocks and the causal relationship among the exogenous shocks and macroeconomic variables will provide good indicators for macroprudential policy.

Suggested Citation

  • IKEDA Yuichi & YOSHIKAWA Hiroshi, 2018. "Macroprudential Modeling Based on Spin Dynamics in a Supply Chain Network," Discussion papers 18045, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:18045
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/18e045.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borio, Claudio & Zhu, Haibin, 2012. "Capital regulation, risk-taking and monetary policy: A missing link in the transmission mechanism?," Journal of Financial Stability, Elsevier, vol. 8(4), pages 236-251.
    2. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    3. Kaizoji, Taisei, 2000. "Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 493-506.
    4. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    5. S. V. Vikram & Sitabhra Sinha, 2010. "Emergence of universal scaling in financial markets from mean-field dynamics," Papers 1006.0628, arXiv.org.
    6. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    7. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    8. Jean-Pierre Nadal & Denis Phan & Mirta Gordon & Jean Vannimenus, 2005. "Multiple equilibria in a monopoly market with heterogeneous agents and externalities," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 557-568.
    9. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    2. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    3. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    4. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    5. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    6. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    7. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    8. Taisei Kaizoji, 2013. "Modelling of Stock Returns and Trading Volume," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 147-155, July.
    9. Krause, Sebastian M. & Bornholdt, Stefan, 2013. "Spin models as microfoundation of macroscopic market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4048-4054.
    10. Taisei Kaizoji, 2013. "Modeling of Stock Returns and Trading Volume," Papers 1309.2416, arXiv.org.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    12. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    13. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    14. Lilit Popoyan, 2020. "Macroprudential Policy: a Blessing or a Curse?," Review of Economics and Institutions, Università di Perugia, vol. 11(1-2).
    15. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    16. Wang, Chengjin & Gao, Yudong & Li, Honggang, 2021. "Information interaction, behavioral synchronization and asset market volatility," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    17. Pigeard de Almeida Prado, Fernando & Belitsky, Vladimir & Ferreira, Alex Luiz, 2011. "Social interactions, product differentiation and discontinuity of demand," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 642-653.
    18. Gunter M. Schutz & Fernando Pigeard de Almeida Prado & Rosemary J. Harris & Vladimir Belitsky, 2007. "Short-time behaviour of demand and price viewed through an exactly solvable model for heterogeneous interacting market agents," Papers 0801.0003, arXiv.org, revised Jun 2009.
    19. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    20. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:18045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.