IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1011-d483338.html
   My bibliography  Save this article

Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market

Author

Listed:
  • Seung Hwan Jeong

    (Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea)

  • Hee Soo Lee

    (Department of Business Administration, Sejong University, Seoul 05006, Korea)

  • Hyun Nam

    (Department of Investment Information Engineering, Yonsei University, Seoul 03722, Korea)

  • Kyong Joo Oh

    (Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea)

Abstract

Research on stock market prediction has been actively conducted over time. Pertaining to investment, stock prices and trading volume are important indicators. While extensive research on stocks has focused on predicting stock prices, not much focus has been applied to predicting trading volume. The extensive trading volume by large institutions, such as pension funds, has a great impact on the market liquidity. To reduce the impact on the stock market, it is essential for large institutions to correctly predict the intraday trading volume using the volume weighted average price (VWAP) method. In this study, we predict the intraday trading volume using various methods to properly conduct VWAP trading. With the trading volume data of the Korean stock price index 200 (KOSPI 200) futures index from December 2006 to September 2020, we predicted the trading volume using dynamic time warping (DTW) and a genetic algorithm (GA). The empirical results show that the model using the simple average of the trading volume during the optimal period constructed by GA achieved the best performance. As a result of this study, we expect that large institutions will perform more appropriate VWAP trading in a sustainable manner, leading the stock market to be revitalized by enhanced liquidity. In this sense, the model proposed in this paper would contribute to creating efficient stock markets and help to achieve sustainable economic growth.

Suggested Citation

  • Seung Hwan Jeong & Hee Soo Lee & Hyun Nam & Kyong Joo Oh, 2021. "Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    2. Hyounggun Song & Sung Kwon Han & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2019. "Using Genetic Algorithms to Develop a Dynamic Guaranteed Option Hedge System," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    3. Owain Ap Gwilym & David McMillan & Alan Speight, 1999. "The intraday relationship between volume and volatility in LIFFE futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 593-604.
    4. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    5. James McCulloch & Vladimir Kazakov, 2007. "Optimal VWAP Trading Strategy and Relative Volume," Research Paper Series 201, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    7. William Wai Him Tsang & Terence Tai Leung Chong, 2009. "Profitability of the On-Balance Volume Indicator," Economics Bulletin, AccessEcon, vol. 29(3), pages 2424-2431.
    8. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    9. Kazuhiro Kohara & Tsutomu Ishikawa & Yoshimi Fukuhara & Yukihiro Nakamura, 1997. "Stock Price Prediction Using Prior Knowledge and Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 6(1), pages 11-22, March.
    10. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    11. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    12. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    13. Jiwoo Kim & Sanghun Shin & Hee Soo Lee & Kyong Joo Oh, 2019. "A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    14. Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    2. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    3. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    4. Yoojeong Song & Jae Won Lee & Jongwoo Lee, 2022. "Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 27-38, January.
    5. Francesco Calvori & Fabrizio Cipollini & Giampiero M. Gallo, 2014. "Go with the Flow: A GAS model for Predicting Intra-daily Volume Shares," Econometrics Working Papers Archive 2014_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    6. Ye Xunyu & Yan Rui & Li Handong, 2014. "Forecasting trading volume in the Chinese stock market based on the dynamic VWAP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 125-144, April.
    7. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    8. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    9. Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2012. "Reducing the risk of VWAP orders execution - A new approach to modeling intra-day volume," Post-Print hal-01632822, HAL.
    10. Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
    11. Katsafados, Apostolos G. & Androutsopoulos, Ion & Chalkidis, Ilias & Fergadiotis, Manos & Leledakis, George N. & Pyrgiotakis, Emmanouil G., 2020. "Textual Information and IPO Underpricing: A Machine Learning Approach," MPRA Paper 103813, University Library of Munich, Germany.
    12. Antonakakis, Nikolaos & Floros, Christos & Kizys, Renatas, 2016. "Dynamic spillover effects in futures markets: UK and US evidence," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 406-418.
    13. Manahov, Viktor & Hudson, Robert & Linsley, Philip, 2014. "New evidence about the profitability of small and large stocks and the role of volume obtained using Strongly Typed Genetic Programming," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 299-316.
    14. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    15. Enzo Busseti & Stephen Boyd, 2015. "Volume Weighted Average Price Optimal Execution," Papers 1509.08503, arXiv.org.
    16. Alexander Buryak & Ivan Guo, 2014. "Effective and simple VWAP option pricing model," Papers 1407.7315, arXiv.org.
    17. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    18. Huijian Dong & Xiaomin Guo & Han Reichgelt & Ruizhi Hu, 2020. "Predictive power of ARIMA models in forecasting equity returns: a sliding window method," Journal of Asset Management, Palgrave Macmillan, vol. 21(6), pages 549-566, October.
    19. Xiaodong Li & Pangjing Wu & Chenxin Zou & Qing Li, 2022. "Hierarchical Deep Reinforcement Learning for VWAP Strategy Optimization," Papers 2212.14670, arXiv.org.
    20. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.