Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
- Hyounggun Song & Sung Kwon Han & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2019. "Using Genetic Algorithms to Develop a Dynamic Guaranteed Option Hedge System," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
- Owain Ap Gwilym & David McMillan & Alan Speight, 1999. "The intraday relationship between volume and volatility in LIFFE futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 593-604.
- Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008.
"Improving VWAP strategies: A dynamic volume approach,"
Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
- Jedrzej Białkowski & Serge Darolles & Gaëlle Le Fol, 2006. "Improving VWAP strategies: A dynamical volume approach," Documents de recherche 06-08, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Jędrzej Białkowski & Serge Darolles & Gaëlle Le Fol, 2008. "Improving VWAP strategies: A dynamic volume approach," Post-Print hal-02877984, HAL.
- Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2008. "Improving VWAP strategies: A dynamic volume approach," Post-Print halshs-00676946, HAL.
- James McCulloch & Vladimir Kazakov, 2007. "Optimal VWAP Trading Strategy and Relative Volume," Research Paper Series 201, Quantitative Finance Research Centre, University of Technology, Sydney.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- William Wai Him Tsang & Terence Tai Leung Chong, 2009. "Profitability of the On-Balance Volume Indicator," Economics Bulletin, AccessEcon, vol. 29(3), pages 2424-2431.
- Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
- Kazuhiro Kohara & Tsutomu Ishikawa & Yoshimi Fukuhara & Yukihiro Nakamura, 1997. "Stock Price Prediction Using Prior Knowledge and Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 6(1), pages 11-22, March.
- Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
- Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
- Jiwoo Kim & Sanghun Shin & Hee Soo Lee & Kyong Joo Oh, 2019. "A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
- Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
- Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
- Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
- Yoojeong Song & Jae Won Lee & Jongwoo Lee, 2022. "Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 27-38, January.
- Francesco Calvori & Fabrizio Cipollini & Giampiero M. Gallo, 2014. "Go with the Flow: A GAS model for Predicting Intra-daily Volume Shares," Econometrics Working Papers Archive 2014_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
- Ye Xunyu & Yan Rui & Li Handong, 2014. "Forecasting trading volume in the Chinese stock market based on the dynamic VWAP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(2), pages 125-144, April.
- Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
- Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
- Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2012. "Reducing the risk of VWAP orders execution - A new approach to modeling intra-day volume," Post-Print hal-01632822, HAL.
- Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
- Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
- Katsafados, Apostolos G. & Androutsopoulos, Ion & Chalkidis, Ilias & Fergadiotis, Manos & Leledakis, George N. & Pyrgiotakis, Emmanouil G., 2020. "Textual Information and IPO Underpricing: A Machine Learning Approach," MPRA Paper 103813, University Library of Munich, Germany.
- Antonakakis, Nikolaos & Floros, Christos & Kizys, Renatas, 2016. "Dynamic spillover effects in futures markets: UK and US evidence," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 406-418.
- Manahov, Viktor & Hudson, Robert & Linsley, Philip, 2014. "New evidence about the profitability of small and large stocks and the role of volume obtained using Strongly Typed Genetic Programming," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 299-316.
- Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
- Enzo Busseti & Stephen Boyd, 2015. "Volume Weighted Average Price Optimal Execution," Papers 1509.08503, arXiv.org.
- Alexander Buryak & Ivan Guo, 2014. "Effective and simple VWAP option pricing model," Papers 1407.7315, arXiv.org.
- Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
- Huijian Dong & Xiaomin Guo & Han Reichgelt & Ruizhi Hu, 2020. "Predictive power of ARIMA models in forecasting equity returns: a sliding window method," Journal of Asset Management, Palgrave Macmillan, vol. 21(6), pages 549-566, October.
- Xiaodong Li & Pangjing Wu & Chenxin Zou & Qing Li, 2022. "Hierarchical Deep Reinforcement Learning for VWAP Strategy Optimization," Papers 2212.14670, arXiv.org.
More about this item
Keywords
dynamic time warping; genetic algorithm; sliding window; volume forecasting; volume weighted average price;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.