A comparison between several correlated stochastic volatility models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2004.06.103
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Josep Perello & Jaume Masoliver & Napoleon Anento, 2003. "A comparison between several correlated stochastic volatility models," Papers cond-mat/0312121, arXiv.org.
References listed on IDEAS
- Jean-Pierre Fouque & George Papanicolaou & K. Ronnie Sircar, 2000. "Mean-Reverting Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 101-142.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jaume Masoliver & Josep Perello, 2006.
"Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model,"
Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
- Jaume Masoliver & Josep Perello, 2005. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Papers cond-mat/0501639, arXiv.org.
- Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
- Nakamura, Tomomichi & Small, Michael, 2007. "Tests of the random walk hypothesis for financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 599-615.
- Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
- Zoltan Eisler & Janos Kertesz, 2004. "Multifractal model of asset returns with leverage effect," Papers cond-mat/0403767, arXiv.org, revised May 2004.
- Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maxim Bichuch & Jean-Pierre Fouque, 2019. "Optimal Investment with Correlated Stochastic Volatility Factors," Papers 1908.07626, arXiv.org, revised Nov 2022.
- Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Yipeng Yang & Allanus Tsoi, 2013. "Prospect Agents and the Feedback Effect on Price Fluctuations," Papers 1308.6759, arXiv.org, revised Jan 2014.
- Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Alexander Lykov & Stepan Muzychka & Kirill Vaninsky, 2016. "Investor'S Sentiment In Multi-Agent Model Of The Continuous Double Auction," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-29, September.
- Kim, Donghyun & Choi, Sun-Yong & Yoon, Ji-Hun, 2021. "Pricing of vulnerable options under hybrid stochastic and local volatility," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
- Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
- Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
- Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
- Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
- Alibeiki, Hedayat & Lotfaliei, Babak, 2022. "To expand and to abandon: Real options under asset variance risk premium," European Journal of Operational Research, Elsevier, vol. 300(2), pages 771-787.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2014. "An Evolving Fuzzy-Garch Approach Forfinancial Volatility Modeling And Forecasting," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 138, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
- Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
- Ma, Chao & Ma, Qinghua & Yao, Haixiang & Hou, Tiancheng, 2018. "An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 87-117.
- Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.
- Kim, Hyun-Gyoon & Kim, Jeong-Hoon, 2023. "A stochastic-local volatility model with Le´vy jumps for pricing derivatives," Applied Mathematics and Computation, Elsevier, vol. 451(C).
- Weixuan Xia, 2023. "Optimal Consumption--Investment Problems under Time-Varying Incomplete Preferences," Papers 2312.00266, arXiv.org.
- Rebonato, Riccardo & Ronzani, Riccardo, 2021. "Is convexity efficiently priced? Evidence from international swap markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 392-413.
More about this item
Keywords
Volatility autocorrelation; Leverage; Stochastic volatility models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:1:p:134-137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.