IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v324y2003i1p303-310.html
   My bibliography  Save this article

Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes

Author

Listed:
  • Silva, A.Christian
  • Yakovenko, Victor M.

Abstract

We compare the probability distribution of returns for the three major stock-market indexes (Nasdaq, S&P500, and Dow-Jones) with an analytical formula recently derived by Drăgulescu and Yakovenko for the Heston model with stochastic variance. For the period of 1982–1999, we find a very good agreement between the theory and the data for a wide range of time lags from 1 to 250 days. On the other hand, deviations start to appear when the data for 2000–2002 are included. We interpret this as a statistical evidence of the major change in the market from a positive growth rate in 1980s and 1990s to a negative rate in 2000s.

Suggested Citation

  • Silva, A.Christian & Yakovenko, Victor M., 2003. "Comparison between the probability distribution of returns in the Heston model and empirical data for stock indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 303-310.
  • Handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:303-310
    DOI: 10.1016/S0378-4371(02)01903-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437102019039
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(02)01903-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    2. Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
    3. Hosseiny, Ali, 2017. "A geometrical imaging of the real gap between economies of China and the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 151-161.
    4. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    6. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    7. Leng, Na & Li, Jiang-Cheng, 2020. "Forecasting the crude oil prices based on Econophysics and Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    9. Dolgov, Urij, 2015. "Calibration of Heston's stochastic volatility model to an empirical density using a genetic algorithm," Forschung am ivwKöln 3/2015, Technische Hochschule Köln – University of Applied Sciences, Institute for Insurance Studies.
    10. Kleinert, H. & Chen, X.J., 2007. "Boltzmann distribution and market temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 513-518.
    11. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    12. Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
    13. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:324:y:2003:i:1:p:303-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.