IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v81y2015ipbp519-526.html
   My bibliography  Save this article

Fractional kinetics of subdiffusion-limited decomposition of a supersaturated solid solution

Author

Listed:
  • Sibatov, R.T.
  • Svetukhin, V.V.

Abstract

Precipitation of atoms and defects can substantially change mechanical, electrical and optical properties of materials. Its kinetics is usually described by some model of diffusion-limited process. Evidence of anomalous diffusion of impurities and defects in disordered solids stimulates to develop generalized models. In present work, we study the kinetics of subdiffusion-limited growth and dissolution of nanoprecipitates in disordered solids on the base of subdiffusion equations with fractional derivatives. Analytical results are compared with Monte Carlo simulation data. Foundation of the fractional model of subdiffusion-limited Ostwald ripening is proposed.

Suggested Citation

  • Sibatov, R.T. & Svetukhin, V.V., 2015. "Fractional kinetics of subdiffusion-limited decomposition of a supersaturated solid solution," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 519-526.
  • Handle: RePEc:eee:chsofr:v:81:y:2015:i:pb:p:519-526
    DOI: 10.1016/j.chaos.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915001137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.
    2. Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    2. Pakhare, Sumit S. & Daftardar-Gejji, Varsha & Badwaik, Dilip S. & Deshpande, Amey & Gade, Prashant M., 2020. "Emergence of order in dynamical phases in coupled fractional gauss map," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    2. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 120-132.
    3. Golder, J. & Joelson, M. & Néel, M.C., 2011. "Mass transport with sorption in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2181-2189.
    4. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    5. Gajda, Janusz & Magdziarz, Marcin, 2014. "Large deviations for subordinated Brownian motion and applications," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 149-156.
    6. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    7. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    8. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    9. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Mura, A. & Taqqu, M.S. & Mainardi, F., 2008. "Non-Markovian diffusion equations and processes: Analysis and simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5033-5064.
    11. Meerschaert, Mark M. & Mortensen, Jeff & Wheatcraft, Stephen W., 2006. "Fractional vector calculus for fractional advection–dispersion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 181-190.
    12. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    13. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    14. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    15. He, Yue & Kawai, Reiichiro, 2022. "Super- and subdiffusive positions in fractional Klein–Kramers equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    16. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    17. Marseguerra, M. & Zoia, A., 2007. "Monte Carlo investigation of anomalous transport in presence of a discontinuity and of an advection field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 448-464.
    18. Xu, Wei & Liang, Yingjie & Chen, Wen & Wang, Fajie, 2020. "Recent advances of stretched Gaussian distribution underlying Hausdorff fractal distance and its applications in fitting stretched Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    19. Leonenko, N.N. & Papić, I. & Sikorskii, A. & Šuvak, N., 2017. "Heavy-tailed fractional Pearson diffusions," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3512-3535.
    20. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:81:y:2015:i:pb:p:519-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.