IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v344y2004i3p580-586.html
   My bibliography  Save this article

Multifractal spectrum of a laser beam melt ablation process

Author

Listed:
  • Rodrigues Neto, Camilo
  • Bube, Kevin
  • Cser, Adrienn
  • Otto, Andreas
  • Feudel, Ulrike

Abstract

The surface profiles resulting from a laser beam melt ablation process have been quantified on the basis of the multifractal formalism. The multifractal spectra for several parameters sets, obtained with the wavelet transform modulus maxima method, were found to change towards higher Hölder exponents as the system undergoes a regime transition from medium to high ablation rates. This is consistent with the experimental observation of pattern formation at high ablation rates.

Suggested Citation

  • Rodrigues Neto, Camilo & Bube, Kevin & Cser, Adrienn & Otto, Andreas & Feudel, Ulrike, 2004. "Multifractal spectrum of a laser beam melt ablation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 580-586.
  • Handle: RePEc:eee:phsmap:v:344:y:2004:i:3:p:580-586
    DOI: 10.1016/j.physa.2004.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104008003
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makarenko, N.G. & Karimova, L.M. & Kozelov, B.V. & Novak, M.M., 2012. "Multifractal analysis based on the Choquet capacity: Application to solar magnetograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4290-4301.
    2. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Ben Omrane, Ines, 2024. "Multifractal analysis of anisotropic and directional pointwise regularities for measures," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    5. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    6. Struzik, Zbigniew R., 2001. "Wavelet methods in (financial) time-series processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 307-319.
    7. Bolzan, M.J.A., 2018. "A modeling substorm dynamics of the magnetosphere using self-organized criticality approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1182-1188.
    8. Pavlos, G.P. & Iliopoulos, A.C. & Zastenker, G.N. & Zelenyi, L.M. & Karakatsanis, L.P. & Riazantseva, M.O. & Xenakis, M.N. & Pavlos, E.G., 2015. "Tsallis non-extensive statistics and solar wind plasma complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 113-135.
    9. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    10. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    11. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    12. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    14. Ayache, Antoine & Esser, Céline & Kleyntssens, Thomas, 2019. "Different possible behaviors of wavelet leaders of the Brownian motion," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 54-60.
    15. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    16. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index," MPRA Paper 41408, University Library of Munich, Germany.
    17. Crepaldi, Antonio F. & Neto, Camilo Rodrigues & Ferreira, Fernando F. & Francisco, Gerson, 2009. "Multifractal regime transition in a modified minority game model," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1364-1371.
    18. Pavlos, G.P. & Malandraki, O.E. & Pavlos, E.G. & Iliopoulos, A.C. & Karakatsanis, L.P., 2016. "Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 149-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:344:y:2004:i:3:p:580-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.