IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v150y2019icp54-60.html
   My bibliography  Save this article

Different possible behaviors of wavelet leaders of the Brownian motion

Author

Listed:
  • Ayache, Antoine
  • Esser, Céline
  • Kleyntssens, Thomas

Abstract

The aim of this paper is to prove that wavelet leaders allow to get very fine properties of the trajectories of the Brownian motion: we show that the three well-known behaviors of its oscillations, namely to be ordinary, rapid and slow, are also present in the behavior of the size of its wavelet leaders.

Suggested Citation

  • Ayache, Antoine & Esser, Céline & Kleyntssens, Thomas, 2019. "Different possible behaviors of wavelet leaders of the Brownian motion," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 54-60.
  • Handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:54-60
    DOI: 10.1016/j.spl.2019.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    2. B. Lashermes & S. G. Roux & P. Abry & S. Jaffard, 2008. "Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 201-215, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loosveldt, L., 2023. "Multifractional Hermite processes: Definition and first properties," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 465-500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    2. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Ben Omrane, Ines, 2024. "Multifractal analysis of anisotropic and directional pointwise regularities for measures," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    5. Xiong, Gang & Zhang, Shuning & Yang, Xiaoniu, 2012. "The fractal energy measurement and the singularity energy spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6347-6361.
    6. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    7. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    8. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    10. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    11. Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
    12. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index," MPRA Paper 41408, University Library of Munich, Germany.
    13. Pavlos, G.P. & Malandraki, O.E. & Pavlos, E.G. & Iliopoulos, A.C. & Karakatsanis, L.P., 2016. "Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 149-181.
    14. Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
    15. Makarenko, N.G. & Karimova, L.M. & Kozelov, B.V. & Novak, M.M., 2012. "Multifractal analysis based on the Choquet capacity: Application to solar magnetograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4290-4301.
    16. Welter, Guilherme Sausen & Wittwer, Adrián Roberto & Degrazia, Gervásio Annes & Acevedo, Otávio Costa & de Moraes, Osvaldo Luiz Leal & Anfossi, Domenico, 2009. "Measurements of the Kolmogorov constant from laboratory and geophysical wind data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3745-3751.
    17. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    18. Struzik, Zbigniew R., 2001. "Wavelet methods in (financial) time-series processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 307-319.
    19. Bolzan, M.J.A., 2018. "A modeling substorm dynamics of the magnetosphere using self-organized criticality approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1182-1188.
    20. Pavlos, G.P. & Iliopoulos, A.C. & Zastenker, G.N. & Zelenyi, L.M. & Karakatsanis, L.P. & Riazantseva, M.O. & Xenakis, M.N. & Pavlos, E.G., 2015. "Tsallis non-extensive statistics and solar wind plasma complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 113-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:150:y:2019:i:c:p:54-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.