IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i3p1364-1371.html
   My bibliography  Save this article

Multifractal regime transition in a modified minority game model

Author

Listed:
  • Crepaldi, Antonio F.
  • Neto, Camilo Rodrigues
  • Ferreira, Fernando F.
  • Francisco, Gerson

Abstract

The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes.

Suggested Citation

  • Crepaldi, Antonio F. & Neto, Camilo Rodrigues & Ferreira, Fernando F. & Francisco, Gerson, 2009. "Multifractal regime transition in a modified minority game model," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1364-1371.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1364-1371
    DOI: 10.1016/j.chaos.2009.03.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909001337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    2. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    3. Matteo Marsili & Maurizio Piai, 2002. "Colored minority games," Papers cond-mat/0202479, arXiv.org.
    4. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    5. Wohlmuth, Johannes & Andersen, Jørgen Vitting, 2006. "Modelling financial markets with agents competing on different time scales and with different amount of information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 459-468.
    6. Céline Azizieh & Wolfgang Breymann, 2005. "Estimation of the Stylized Facts of a Stochastic Cascade Model," Working Papers CEB 05-009.RS, ULB -- Universite Libre de Bruxelles.
    7. Sergio Bianchi, 2005. "A cautionary note on the detection of multifractal scaling in finance and economics," Applied Economics Letters, Taylor & Francis Journals, vol. 12(12), pages 775-780.
    8. A. Martino, 2003. "Dynamics of multi-frequency minority games," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 35(1), pages 143-152, September.
    9. Marsili, Matteo & Piai, Maurizio, 2002. "Colored minority games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(1), pages 234-244.
    10. Andrea De Martino, 2003. "Dynamics of multi-frequency minority games," Papers cond-mat/0306507, arXiv.org.
    11. A. C. C. Coolen & J. A. F. Heimel & D. Sherrington, 2001. "Dynamics of the Batch Minority Game with Inhomogeneous Decision Noise," Papers cond-mat/0106635, arXiv.org, revised Jul 2001.
    12. Jae Woo Lee & Kyuoung Eun Lee & Per Arne Rikvold, 2004. "Multifractal Behavior of the Korean Stock-market Index KOSPI," Papers nlin/0412038, arXiv.org, revised Sep 2005.
    13. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    14. Ferreira, Fernando F & Francisco, Gerson & Machado, Birajara S & Muruganandam, Paulsamy, 2003. "Time series analysis for minority game simulations of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 619-632.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando F. Ferreira & A. Christian Silva & Ju-Yi Yen, 2019. "Detailed study of a moving average trading rule," Papers 1907.00212, arXiv.org.
    2. da Fonseca, Eder Lucio & Ferreira, Fernando F. & Muruganandam, Paulsamy & Cerdeira, Hilda A., 2013. "Identifying financial crises in real time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1386-1392.
    3. Lin, Hai & Yang, Dong-Ping & Shuai, J.W., 2011. "Cooperation among mobile individuals with payoff expectations in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 153-159.
    4. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    2. Lustosa, Bernardo C. & Cajueiro, Daniel O., 2010. "Constrained information minority game: How was the night at El Farol?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1230-1238.
    3. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    4. Vee-Liem Saw & Lock Yue Chew, 2020. "No-boarding buses: Synchronisation for efficiency," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-34, March.
    5. Ehrentreich, Norman, 2006. "Technical trading in the Santa Fe Institute Artificial Stock Market revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 599-616, December.
    6. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    7. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    8. Perepelitsa, Misha & Timofeyev, Ilya, 2019. "Asynchronous stochastic price pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 356-364.
    9. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    10. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    11. J.-H. Steffi Yang & Satchell, S.E., 2002. "The Impact of Technical Analysis on Asset Price Dynamics," Cambridge Working Papers in Economics 0219, Faculty of Economics, University of Cambridge.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Torsten Trimborn, 2018. "A Macroscopic Portfolio Model: From Rational Agents to Bounded Rationality," Papers 1805.11036, arXiv.org, revised Oct 2018.
    14. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    15. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    16. Brugna, Carlo & Toscani, Giuseppe, 2018. "Kinetic models for goods exchange in a multi-agent market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 362-375.
    17. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2018. "Simulation of Stylized Facts in Agent-Based Computational Economic Market Models," Papers 1812.02726, arXiv.org, revised Nov 2019.
    18. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    19. Anufriev Mikhail & Bottazzi Giulio, 2012. "Asset Pricing with Heterogeneous Investment Horizons," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-38, October.
    20. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1364-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.