IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v503y2018icp1182-1188.html
   My bibliography  Save this article

A modeling substorm dynamics of the magnetosphere using self-organized criticality approach

Author

Listed:
  • Bolzan, M.J.A.

Abstract

Responses of Earth magnetic field during substorms exhibits a number of characteristics features such as the power-law spectra of fluctuations on different scales and signatures of low effective dimensions. Due the magnetosphere are constantly out-equilibrium their behavior is similar to real sandpiles during substorms, features of self-organized criticality (SOC) systems. Thus, in this work we presented a simple mathematical model to AE-index based on self-organizing sandpile mentioned by Uritsky and Pudovkin (1998), but we input the energy dissipation process inside the model. The statistical and multifractal tools to characterization of dynamical processes were used. The results also were compared with results from a classical geomagnetic event of the July, 2000, including the Bastille Day intense geomagnetic storm on 15 July.

Suggested Citation

  • Bolzan, M.J.A., 2018. "A modeling substorm dynamics of the magnetosphere using self-organized criticality approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1182-1188.
  • Handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:1182-1188
    DOI: 10.1016/j.physa.2018.08.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118311051
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    2. Pavlos, G.P. & Iliopoulos, A.C. & Tsoutsouras, V.G. & Sarafopoulos, D.V. & Sfiris, D.S. & Karakatsanis, L.P. & Pavlos, E.G., 2011. "First and second order non-equilibrium phase transition and evidence for non-extensive Tsallis statistics in Earth’s magnetosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(15), pages 2819-2839.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavlos, G.P. & Iliopoulos, A.C. & Zastenker, G.N. & Zelenyi, L.M. & Karakatsanis, L.P. & Riazantseva, M.O. & Xenakis, M.N. & Pavlos, E.G., 2015. "Tsallis non-extensive statistics and solar wind plasma complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 113-135.
    2. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Ben Omrane, Ines, 2024. "Multifractal analysis of anisotropic and directional pointwise regularities for measures," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    5. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    6. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    7. Stratimirovic, Djordje & Batas-Bjelic, Ilija & Djurdjevic, Vladimir & Blesic, Suzana, 2021. "Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    9. Ayache, Antoine & Esser, Céline & Kleyntssens, Thomas, 2019. "Different possible behaviors of wavelet leaders of the Brownian motion," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 54-60.
    10. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    11. Dominique, C-Rene & Rivera-Solis, Luis Eduardo, 2012. "Short-term Dependence in Time Series as an Index of Complexity: Example from the S&P-500 Index," MPRA Paper 41408, University Library of Munich, Germany.
    12. Pavlos, G.P. & Malandraki, O.E. & Pavlos, E.G. & Iliopoulos, A.C. & Karakatsanis, L.P., 2016. "Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 149-181.
    13. Makarenko, N.G. & Karimova, L.M. & Kozelov, B.V. & Novak, M.M., 2012. "Multifractal analysis based on the Choquet capacity: Application to solar magnetograms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4290-4301.
    14. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    15. Struzik, Zbigniew R., 2001. "Wavelet methods in (financial) time-series processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 307-319.
    16. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    17. Morales Martínez, Jorge Luis & Segovia-Domínguez, Ignacio & Rodríguez, Israel Quiros & Horta-Rangel, Francisco Antonio & Sosa-Gómez, Guillermo, 2021. "A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    18. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N., 2012. "Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma, Part one: Sunspot dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6287-6319.
    19. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N. & Sarafopoulos, D. & Pavlos, E.G., 2012. "Tsallis statistics and magnetospheric self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3069-3080.
    20. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N. & Pavlos, E.G. & Iliopoulos, A.C. & Sarafopoulos, D.V., 2014. "Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 58-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:503:y:2018:i:c:p:1182-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.