IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v1y2014i1p1-5.html
   My bibliography  Save this article

A fast and simple branching algorithm for solving small scale fixed-charge transportation problem

Author

Listed:
  • Kowalski, Krzysztof
  • Lev, Benjamin
  • Shen, Wenjing
  • Tu, Yan

Abstract

In this paper, we develop a simple algorithm for obtaining the global solution to a small scale fixed-charge transportation problem (FCTP). The procedure itself is very quick. The proposed method solves FCTP by decomposing the problem into series of smaller sub-problems, which is novel and can be useful to researchers solving any size of the problem.

Suggested Citation

  • Kowalski, Krzysztof & Lev, Benjamin & Shen, Wenjing & Tu, Yan, 2014. "A fast and simple branching algorithm for solving small scale fixed-charge transportation problem," Operations Research Perspectives, Elsevier, vol. 1(1), pages 1-5.
  • Handle: RePEc:eee:oprepe:v:1:y:2014:i:1:p:1-5
    DOI: 10.1016/j.orp.2014.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716014000025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2014.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    2. Qin, Hu & Luo, Meifeng & Gao, Xiang & Lim, Andrew, 2012. "The freight allocation problem with all-units quantity-based discount: A heuristic algorithm," Omega, Elsevier, vol. 40(4), pages 415-423.
    3. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    4. Katta G. Murty, 1968. "Solving the Fixed Charge Problem by Ranking the Extreme Points," Operations Research, INFORMS, vol. 16(2), pages 268-279, April.
    5. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    6. Warren E. Walker, 1976. "A Heuristic Adjacent Extreme Point Algorithm for the Fixed Charge Problem," Management Science, INFORMS, vol. 22(5), pages 587-596, January.
    7. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    8. Caramia, M. & Guerriero, F., 2009. "A heuristic approach to long-haul freight transportation with multiple objective functions," Omega, Elsevier, vol. 37(3), pages 600-614, June.
    9. Li, Jing-Quan & Borenstein, Denis & Mirchandani, Pitu B., 2008. "Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil," Omega, Elsevier, vol. 36(6), pages 1133-1149, December.
    10. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Udatta S. Palekar & Mark H. Karwan & Stanley Zionts, 1990. "A Branch-and-Bound Method for the Fixed Charge Transportation Problem," Management Science, INFORMS, vol. 36(9), pages 1092-1105, September.
    12. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    13. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    14. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khurana, Archana & Adlakha, Veena & Lev, Benjamin, 2018. "Multi-index constrained transportation problem with bounds on availabilities, requirements and commodities," Operations Research Perspectives, Elsevier, vol. 5(C), pages 319-333.
    2. A. N. Balaji & J. Mukund Nilakantan & Izabela Nielsen & N. Jawahar & S. G. Ponnambalam, 2019. "Solving fixed charge transportation problem with truck load constraint using metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 207-236, February.
    3. Farhad Ghassemi Tari, 2016. "A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism," Journal of Optimization, Hindawi, vol. 2016, pages 1-9, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    2. V. Adlakha & K. Kowalski, 2015. "Fractional Polynomial Bounds for the Fixed Charge Problem," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1026-1038, March.
    3. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    4. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    5. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    6. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    7. Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.
    8. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    9. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    10. A. N. Balaji & J. Mukund Nilakantan & Izabela Nielsen & N. Jawahar & S. G. Ponnambalam, 2019. "Solving fixed charge transportation problem with truck load constraint using metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 207-236, February.
    11. Jawahar, N. & Balaji, A.N., 2009. "A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge," European Journal of Operational Research, Elsevier, vol. 194(2), pages 496-537, April.
    12. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    13. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    14. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    15. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.
    16. Aristide Mingozzi & Roberto Roberti, 2018. "An Exact Algorithm for the Fixed Charge Transportation Problem Based on Matching Source and Sink Patterns," Transportation Science, INFORMS, vol. 52(2), pages 229-238, March.
    17. Yixin Zhao & Torbjörn Larsson & Elina Rönnberg & Panos M. Pardalos, 2018. "The fixed charge transportation problem: a strong formulation based on Lagrangian decomposition and column generation," Journal of Global Optimization, Springer, vol. 72(3), pages 517-538, November.
    18. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    19. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    20. Saleem Ramadan & Imad Ramadan, 2012. "Hybrid Two-Stage Algorithm for Solving Transportation Problem," Modern Applied Science, Canadian Center of Science and Education, vol. 6(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:1:y:2014:i:1:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.