IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i2p229-238.html
   My bibliography  Save this article

An Exact Algorithm for the Fixed Charge Transportation Problem Based on Matching Source and Sink Patterns

Author

Listed:
  • Aristide Mingozzi

    (Department of Mathematics, University of Bologna, 40126 Bologna, Italy)

  • Roberto Roberti

    (VU University Amsterdam, 1081 HV Amsterdam, Netherlands)

Abstract

This paper describes an exact algorithm for the fixed charge transportation problem based on a new integer programming formulation that involves two sets of variables representing flow patterns from sources to sinks and from sinks to sources. The formulation states to select a pattern for each source and each sink and to match the corresponding flows. The linear relaxation of this new formulation is enforced by adding a pseudo-polynomial number of equations that are shown to contain, as special cases, different valid inequalities recently proposed for the problem. The resulting lower bound dominates the lower bounds proposed in the literature. Such a lower bound is embedded into an exact branch-and-cut-and-price algorithm. Computational results on benchmark instances show that the proposed algorithm is several times faster than the state-of-the-art exact methods and could solve all open instances. New harder instances with up to 120 sources and 120 sinks were solved to optimality.

Suggested Citation

  • Aristide Mingozzi & Roberto Roberti, 2018. "An Exact Algorithm for the Fixed Charge Transportation Problem Based on Matching Source and Sink Patterns," Transportation Science, INFORMS, vol. 52(2), pages 229-238, March.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:229-238
    DOI: 10.1287/trsc.2017.0742
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0742
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    2. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1999. "Lifted Cover Inequalities for 0-1 Integer Programs: Complexity," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 117-123, February.
    3. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    4. Hultberg, Tim H. & Cardoso, Domingos M., 1997. "The teacher assignment problem: A special case of the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 101(3), pages 463-473, September.
    5. Warren E. Walker, 1976. "A Heuristic Adjacent Extreme Point Algorithm for the Fixed Charge Problem," Management Science, INFORMS, vol. 22(5), pages 587-596, January.
    6. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1998. "Lifted Cover Inequalities for 0-1 Integer Programs: Computation," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 427-437, November.
    7. John Fisk & Patrick McKeown, 1979. "The pure fixed charge transportation problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(4), pages 631-641, December.
    8. Warren M. Hirsch & George B. Dantzig, 1968. "The fixed charge problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 15(3), pages 413-424, September.
    9. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Rardin, Ronald L. & Wolsey, Laurence A., 1993. "Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems," European Journal of Operational Research, Elsevier, vol. 71(1), pages 95-109, November.
    11. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    12. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    2. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    3. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    4. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    5. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    6. Kowalski, Krzysztof & Lev, Benjamin & Shen, Wenjing & Tu, Yan, 2014. "A fast and simple branching algorithm for solving small scale fixed-charge transportation problem," Operations Research Perspectives, Elsevier, vol. 1(1), pages 1-5.
    7. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2018. "The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 143-184, June.
    8. Yixin Zhao & Torbjörn Larsson & Elina Rönnberg & Panos M. Pardalos, 2018. "The fixed charge transportation problem: a strong formulation based on Lagrangian decomposition and column generation," Journal of Global Optimization, Springer, vol. 72(3), pages 517-538, November.
    9. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    10. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    11. V. Adlakha & K. Kowalski, 2015. "Fractional Polynomial Bounds for the Fixed Charge Problem," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1026-1038, March.
    12. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    13. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    14. Gaudioso, Manlio & Monaco, Maria Flavia & Sammarra, Marcello, 2021. "A Lagrangian heuristics for the truck scheduling problem in multi-door, multi-product Cross-Docking with constant processing time," Omega, Elsevier, vol. 101(C).
    15. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    16. Mojtaba Akbari & Saber Molla-Alizadeh-Zavardehi & Sadegh Niroomand, 2020. "Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network," Operational Research, Springer, vol. 20(1), pages 447-471, March.
    17. Alper Atamtürk & Martin Savelsbergh, 2005. "Integer-Programming Software Systems," Annals of Operations Research, Springer, vol. 140(1), pages 67-124, November.
    18. Alex Scott & Chris Parker & Christopher W. Craighead, 2017. "Service Refusals in Supply Chains: Drivers and Deterrents of Freight Rejection," Transportation Science, INFORMS, vol. 51(4), pages 1086-1101, November.
    19. Yongjia Song & James R. Luedtke & Simge Küçükyavuz, 2014. "Chance-Constrained Binary Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 735-747, November.
    20. Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:229-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.