IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v36y1990i9p1092-1105.html
   My bibliography  Save this article

A Branch-and-Bound Method for the Fixed Charge Transportation Problem

Author

Listed:
  • Udatta S. Palekar

    (Department of Mechanical and Industrial Engineering, University of Illinois at Urbana Champaign, 1206 West Green Street, Urbana, Illinois 61801)

  • Mark H. Karwan

    (Department of Industrial Engineering, State University of New York at Buffalo, Buffalo, New York 14260)

  • Stanley Zionts

    (School of Management, State University of New York at Buffalo, Buffalo, New York 14260)

Abstract

In this paper we develop a new conditional penalty for the fixed charge transportation problem. This penalty is stronger than both the Driebeek penalties and the Lagrangean penalties of Cabot and Erenguc. Computational testing shows that the use of these penalties leads to significant reductions in enumeration and solution times for difficult problems in the size range tested. We also study the effect of problem parameters on the difficulty of the problem. The ratio of fixed charges to variable costs, the shape of the problem, arc density in the underlying network and fixed charge arc density are shown to have a significant effect on problem difficulty for problems involving up to 40 origins and 40 destinations.

Suggested Citation

  • Udatta S. Palekar & Mark H. Karwan & Stanley Zionts, 1990. "A Branch-and-Bound Method for the Fixed Charge Transportation Problem," Management Science, INFORMS, vol. 36(9), pages 1092-1105, September.
  • Handle: RePEc:inm:ormnsc:v:36:y:1990:i:9:p:1092-1105
    DOI: 10.1287/mnsc.36.9.1092
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.36.9.1092
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.36.9.1092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dukwon Kim & Xinyan Pan & Panos Pardalos, 2006. "An Enhanced Dynamic Slope Scaling Procedure with Tabu Scheme for Fixed Charge Network Flow Problems," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 273-293, May.
    2. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    3. Francesca Maggioni & Michal Kaut & Luca Bertazzi, 2009. "Stochastic optimization models for a single-sink transportation problem," Computational Management Science, Springer, vol. 6(2), pages 251-267, May.
    4. Adlakha, Veena & Kowalski, Krzysztof, 2003. "A simple heuristic for solving small fixed-charge transportation problems," Omega, Elsevier, vol. 31(3), pages 205-211, June.
    5. Gavin J. Bell & Bruce W. Lamar & Chris A. Wallace, 1999. "Capacity improvement, penalties, and the fixed charge transportation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 341-355, June.
    6. ORTEGA, Francisco & WOLSEY, Laurence, 2000. "A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem," LIDAM Discussion Papers CORE 2000049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. H. Neil Geismar & Gilbert Laporte & Lei Lei & Chelliah Sriskandarajah, 2008. "The Integrated Production and Transportation Scheduling Problem for a Product with a Short Lifespan," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 21-33, February.
    8. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    9. Jawahar, N. & Balaji, A.N., 2009. "A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge," European Journal of Operational Research, Elsevier, vol. 194(2), pages 496-537, April.
    10. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    11. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    12. Sun, Minghe, 2002. "The transportation problem with exclusionary side constraints and two branch-and-bound algorithms," European Journal of Operational Research, Elsevier, vol. 140(3), pages 629-647, August.
    13. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    14. Jesús Sáez Aguado, 2009. "Fixed Charge Transportation Problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems," Annals of Operations Research, Springer, vol. 172(1), pages 45-69, November.
    15. Guinet, Alain, 2001. "Multi-site planning: A transshipment problem," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 21-32, December.
    16. Gurwinder Singh & Amarinder Singh, 2021. "Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1073-1086, December.
    17. Yogesh Agarwal & Yash Aneja, 2012. "Fixed-Charge Transportation Problem: Facets of the Projection Polyhedron," Operations Research, INFORMS, vol. 60(3), pages 638-654, June.
    18. Klose, Andreas & Drexl, Andreas, 2001. "Combinatorial optimisation problems of the assignment type and a partitioning approach," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 545, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. A. N. Balaji & J. Mukund Nilakantan & Izabela Nielsen & N. Jawahar & S. G. Ponnambalam, 2019. "Solving fixed charge transportation problem with truck load constraint using metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 207-236, February.
    20. Kowalski, Krzysztof & Lev, Benjamin & Shen, Wenjing & Tu, Yan, 2014. "A fast and simple branching algorithm for solving small scale fixed-charge transportation problem," Operations Research Perspectives, Elsevier, vol. 1(1), pages 1-5.
    21. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    22. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    23. Dimitri J. Papageorgiou & Alejandro Toriello & George L. Nemhauser & Martin W. P. Savelsbergh, 2012. "Fixed-Charge Transportation with Product Blending," Transportation Science, INFORMS, vol. 46(2), pages 281-295, May.
    24. Adlakha, Veena & Kowalski, Krzysztof, 1999. "On the fixed-charge transportation problem," Omega, Elsevier, vol. 27(3), pages 381-388, June.
    25. V. Adlakha & K. Kowalski, 2015. "Fractional Polynomial Bounds for the Fixed Charge Problem," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1026-1038, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:36:y:1990:i:9:p:1092-1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.