IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v37y2009i3p600-614.html
   My bibliography  Save this article

A heuristic approach to long-haul freight transportation with multiple objective functions

Author

Listed:
  • Caramia, M.
  • Guerriero, F.

Abstract

This paper studies a long-haul freight transportation problem stimulated by a real-life application, whose underlying vehicle routing problem is a multi-objective one, where travel time and route cost are to be minimized together with the maximization of a transportation mean sharing index, related to the capability of the transportation system of generating economy scale solutions. In terms of constraints, besides vehicle capacity and time windows, transportation jobs have to obey additional constraints related to mandatory nodes (e.g., logistic platform nearest to the origin or the destination) and forbidden nodes (e.g., logistic platforms not compatible with the operations required). Based on the network definition, routes can be multimodal. To solve this problem, we propose a heuristic algorithm that can be applied in the tactical and the operational planning phase, and present the results of an extensive experimentation.

Suggested Citation

  • Caramia, M. & Guerriero, F., 2009. "A heuristic approach to long-haul freight transportation with multiple objective functions," Omega, Elsevier, vol. 37(3), pages 600-614, June.
  • Handle: RePEc:eee:jomega:v:37:y:2009:i:3:p:600-614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(08)00028-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N., 2004. "A heuristic algorithm for solving hazardous materials distribution problems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 507-519, January.
    2. Sleman Saliba, 2006. "Heuristics for the lexicographic max-ordering vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 313-336, September.
    3. Horn, Mark E. T., 2003. "An extended model and procedural framework for planning multi-modal passenger journeys," Transportation Research Part B: Methodological, Elsevier, vol. 37(7), pages 641-660, August.
    4. Bahar Y. Kara & Vedat Verter, 2004. "Designing a Road Network for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 38(2), pages 188-196, May.
    5. Bielli, Maurizio & Boulmakoul, Azedine & Mouncif, Hicham, 2006. "Object modeling and path computation for multimodal travel systems," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1705-1730, December.
    6. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    7. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    8. Horn, M. E. T., 2002. "Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(2), pages 167-188, February.
    9. Martins, Ernesto Queiros Vieira, 1984. "On a multicriteria shortest path problem," European Journal of Operational Research, Elsevier, vol. 16(2), pages 236-245, May.
    10. Milan Janic, 2001. "Integrated transport systems in the European Union: An overview of some recent developments," Transport Reviews, Taylor & Francis Journals, vol. 21(4), pages 469-497, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    2. Miriam Enzi & Sophie N. Parragh & Jakob Puchinger, 2022. "The bi-objective multimodal car-sharing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 307-348, June.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Li, Xiangyong & Aneja, Y.P. & Huo, Jiazhen, 2012. "Using branch-and-price approach to solve the directed network design problem with relays," Omega, Elsevier, vol. 40(5), pages 672-679.
    5. Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
    6. Adlakha, Veena & Kowalski, Krzysztof & Wang, Simi & Lev, Benjamin & Shen, Wenjing, 2014. "On approximation of the fixed charge transportation problem," Omega, Elsevier, vol. 43(C), pages 64-70.
    7. Lev, Benjamin & Kowalski, Krzysztof, 2011. "Modeling fixed-charge problems with polynomials," Omega, Elsevier, vol. 39(6), pages 725-728, December.
    8. Mor, Andrea & Archetti, Claudia & Jabali, Ola & Simonetto, Alberto & Speranza, M. Grazia, 2022. "The Bi-objective Long-haul Transportation Problem on a Road Network," Omega, Elsevier, vol. 106(C).
    9. Qian, Fubin & Strusevich, Vitaly & Gribkovskaia, Irina & Halskau, Øyvind, 2015. "Minimization of passenger takeoff and landing risk in offshore helicopter transportation: Models, approaches and analysis," Omega, Elsevier, vol. 51(C), pages 93-106.
    10. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    11. Kowalski, Krzysztof & Lev, Benjamin & Shen, Wenjing & Tu, Yan, 2014. "A fast and simple branching algorithm for solving small scale fixed-charge transportation problem," Operations Research Perspectives, Elsevier, vol. 1(1), pages 1-5.
    12. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    13. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    14. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    15. V. Adlakha & K. Kowalski, 2015. "Fractional Polynomial Bounds for the Fixed Charge Problem," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1026-1038, March.
    16. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    17. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.
    2. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    3. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    4. Andrew Ensor & Felipe Lillo, 2016. "Colored-Edge Graph Approach for the Modeling of Multimodal Transportation Systems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(01), pages 1-21, February.
    5. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    6. Zhang, Lukai & Feng, Xuesong & Chen, Dalin & Zhu, Nan & Liu, Yi, 2019. "Designing a hazardous materials transportation network by a bi-level programming based on toll policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    8. Linzhong Liu & Haibo Mu & Juhua Yang, 2017. "Toward algorithms for multi-modal shortest path problem and their extension in urban transit network," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 767-781, March.
    9. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    10. Ma, Hong & Cheang, Brenda & Lim, Andrew & Zhang, Lei & Zhu, Yi, 2012. "An investigation into the vehicle routing problem with time windows and link capacity constraints," Omega, Elsevier, vol. 40(3), pages 336-347.
    11. Zhang, Meng & Wang, Nengmin & He, Zhengwen & Jiang, Bin, 2021. "Vehicle routing optimization for hazmat shipments considering catastrophe avoidance and failed edges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    12. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    13. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    14. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    15. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    16. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    17. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    18. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    19. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    20. Metin Türkay & Öztürk Saraçoğlu & Mehmet Can Arslan, 2016. "Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:37:y:2009:i:3:p:600-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.